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Abstract: - This paper presents a detailed perspective of two constructive feedback strategies characterized by algebraic 
Riccati equations for solving continuous-time nonlinear deterministic optimal control problems. In each case, the 
system is first transformed into a linear-like, state-dependent structure. The first method is based on treating the 
adapted model as an instantaneously linear time-invariant system to approximate it around each point along a 
trajectory. The control applied at a particular point in state space is determined by solving an infinite-time linear-
quadratic (LQ) regulator problem using the linear model for the particular point. The resultant control law, which is of 
feedback form and nonlinear in the state, involves finding the steady-state solution to the State-Dependent Riccati 
Equation (SDRE) at each point. The SDRE method has become exceptionally well-known within the control 
community for solving autonomous nonlinear regulator problems. Unfortunately, the undeveloped theory of the 
infinite-time LQ optimal tracking problem has hindered its application for solving nonlinear tracking problems. 
Therefore, an approximate approach is introduced in this paper for adapting the SDRE tracking methodology. The 
second method, still at its infancy, has been introduced recently for solving nonlinear optimal regulator and tracking 
problems. The algorithm has been inspired by the SDRE concept, and is characterized similarly by solving an 
Approximating Sequence of Riccati Equations (ASRE) associated with finite-time LQ theory. This paper presents the 
latest results on SDRE and ASRE theories developed in the literature, and focuses on illustrating the application, 
computational advantage and validity of each advanced control methodology on a realistic simulation example of a 
ducted fan engine model for high-performance thrust-vectored aircraft, to fill the gap between theory and practice. The 
proposed methods overcome many of the difficulties and shortcomings of existing methodologies, and deliver 
computationally simple, yet effective, algorithms for constructively synthesizing nonlinear optimal feedback controls. 
 
Key-Words: - Nonlinear control systems; Optimal control; (Non)linear-(non)quadratic problems; Stabilization; 
Regulation; Tracking; Feedback control design; Continuous-time systems; Aircraft (flight) control systems 
 
1   Introduction 
During the 1950's and 1960's, aerospace engineering 
applications greatly stimulated the development of 
optimal control theory, where the objective is to derive 
the system states in such a way that some defined cost 
function is minimized. This turned out to have very 
useful applications in the design of regulators (where 
some steady state is to be maintained) and in tracking 
control strategies (where some predetermined state 
trajectory is to be followed). Among such applications 
was the problem of optimal flight trajectories for aircraft 
and space vehicles. Linear optimal control theory, in 
particular, has been very well documented and widely 
applied, where the plant that is controlled is assumed 
linear and the feedback controller is constrained to be 
linear with respect to its input. In recent years, however, 
the availability of powerful low-cost microprocessors 
has spurred great advantages in the theory and 
applications of nonlinear control. The competitive era of 
rapid technological change and aerospace exploration 
now demands stringent accuracy and cost requirements 
in nonlinear control systems. This has motivated the 

rapid development of nonlinear optimal control theory 
for application to challenging complex dynamical real-
world problems, particularly those that bear major 
practical significance in the aerospace, marine and 
defense industries. Despite recent advances, however, 
there remain many unsolved problems, so much so that 
practicians often complain about the inapplicability of 
contemporary theories. For example, most of the 
techniques developed are, in fact, only local or have very 
limited applicability because of the strong conditions 
imposed on the system. The research in this paper 
represents an attack on this problem. 
     The nonlinear optimal control problem, associated 
with autonomous nonlinear regulator systems that are 
affine (linear) in the controls and with performance 
indices quadratic in the controls, has been studied by 
many authors. The mathematical tools for solving this 
control-affine nonlinear-quadratic optimization problem 
are well-known, but their application is usually a very 
tedious task. In general, with the exception of dynamic 
programming, the resultant control law is not in 
feedback form and some iterative technique is often 
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employed for each set of initial conditions. Open-loop 
control is sensitive to random disturbances and requires 
that the initial state be on the optimal trajectory. Another 
difficulty in controlling the nonlinear dynamic system is 
related to the implementation of optimal control policies. 
A lengthy preliminary computation is often required, 
which presents quite unwieldy solutions for controller 
realization. The exact solution therefore becomes very 
complex and almost impossible to implement. As a 
consequence, the practicing engineer often seeks a 
control law which is close to optimal, with respect to the 
particular quadratic performance index, and which has 
attractive features such as feedback, small computations, 
etc. These problems have led to the study of 
approximately optimal (suboptimal) control laws which 
are easier to implement, but sacrifice some performance. 
Such suboptimal control laws are considered a trade-off 
between achieving true optimality, which is expensive 
and complicated to implement, and achieving a system 
performance which is not optimal but acceptable and 
inexpensive with ease to implement. 
     In the sequel, two constructive algorithms are 
discussed for solving nonlinear-nonquadratic optimal 
regulator and tracking control problems. The formulation 
of the problem is presented in Section 2. The results of 
SDRE theory for nonlinear-nonquadratic optimal 
regulation are summarized in Section 3. The 
approximate SDRE tracking counterpart is subsequently 
introduced. The ASRE algorithm is discussed in Section 
4. The uses and shortcomings of any theory can only be 
appreciated by examining a realistic example. So, in 
Section 5, the practical use of the SDRE and ASRE 
strategies is demonstrated with a realistic problem 
arising in the context of thrust-vectored aircraft. 
Concluding remarks are given in Section 6. 
 
 
2   Problem Formulation 
To illustrate the development of the theories proposed in 
this paper, consider full-state observable, deterministic, 
autonomous, and input-affine nonlinear systems with 
state ( ) nt ∈x ΅ , control ( ) mt ∈u ΅  and output ( ) pt ∈y ΅  
( ,m p n≤ ), associated with the systems dynamics 

 0 0( ) ( ) ( ) ( ), ( )
( ) ( )
t t t
t
= + = ⎫

⎬= ⎭

x f x B x u x x
y g x
&

  (1) 

where : n n→f ΅ ΅ , : n n m×→B ΅ ΅ , : n p→g ΅ ΅ , and 
the origin =x 0  is an equilibrium point, that is, ( ) =f 0 0 , 
without loss of generality. This can be satisfied by 
coordinate transformation provided that (1) has an 
equilibrium point. In this context, the optimization 
problem is considered as the minimization of a finite- or 
infinite-time performance functional, which is 
nonquadratic in x  but quadratic in u  such that, at an 

intermediate value of time 0[ , ]ft t t∈ , the initial time 

0 [0, )ft t∈ , whereas the final time 0( , ]ft t∈ ∞ , which is 
fixed. Hence, written in a quadratic-like form, the cost is 
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where ( )te  is the error being minimized, ( ) pt ∈z ΅  is a 
desired (commanded) output vector, ( )ftx  is free, and 

( )⋅u  is unconstrained. Therefore, the objective is to 
control system (1) so that the output vector ( )ty  follows 
the commanded output vector ( )tz  as “close” as 
possible. Here, : n p p×→F ΅ ΅  and : n p p×→Q ΅ ΅  
represent the end-point and state weighting matrices, 
respectively, and : n m m×→R ΅ ΅  is the input weighting 
matrix. These are assumed state-dependent (hence 
nonlinear), and can be defined quite generally to include 
either stabilization or tracking problems. 
     In contrast to nonlinear problems, notably in linear 
control problems the solution can be extremely simple. 
In the sequel, two methods are devised in an attempt to 
extend the advantages of this simplicity to the general 
class of nonlinear control problems (1) and (2). 
 
 
3   SDRE Theory 
Under the assumption ( ) =f 0 0  and ( ) =g 0 0 , the 
nonlinear system (1) can be represented in a linear-like, 
state-dependent form 

 0 0( ) ( ) ( ) ( ) ( ), ( )
( ) ( ) ( ),
t t t t
t t
= + = ⎫

⎬= ⎭

x A x x B x u x x
y C x x
&

  (3) 

without any loss of generality. Here : n n n×→A ΅ ΅ , 
: n n m×→B ΅ ΅  and : n l n×→C ΅ ΅  are general nonlinear 

matrix functions with continuous entries. Hence, 
analogous to the classical LTV problem, A  becomes the 
dynamic coefficient matrix, B  the input coupling matrix, 
and C  the measurement sensitivity matrix of the 
nonlinear differential equations defining the dynamic 
and output systems (1). They are found by mathematical 
factorization and are, clearly, nonunique. 
     Hypotheses 1. 

(A1) ( )⋅A  and ( )⋅B  are 1( )nC ΅  functions. 
(A2) ( )Q x  is positive-semidefinite and ( )R x  is 

positive-definite n∀ ∈x ΅ . 
(A3) The final time ft = ∞ , such that there is no 

terminal cost, that is, ( ) =F x 0 . 
(A4) The triple 1 2( ( ), ( ), ( ))A x B x Q x  is pointwise 

stabilizable and detectable for each n∈x ΅  in the linear-
system sense. 
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3.1 The Nonlinear State-Regulator Problem 
Let us first consider the infinite-time nonlinear optimal 
stabilization (regulation) problem (2) subject to (3), 
where 0 0t = , ft = ∞ , ( )t =z 0  and ( ) n n×=C x I . 
     Algorithm 1 (Nonlinear optimal stabilizing SDRE 
feedback control law [1],[2]). 

1. Starting at time 0 0t = , with the initial state 

0 0( )t =x x , evaluate ( )A x , ( )B x , ( )Q x  and ( )R x  at 
the current state =x x  at each sampling instant. 

2. At each point x  along the trajectory ( )tx , 
evaluate the positive-definite solution of the infinite-
time algebraic “State-Dependent Riccati Equation” (or 
SDRE) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T+ + − =Q x P x A x A x P x P x S x P x 0      (4) 
with 1( ) ( ) ( ) ( )T−S x B x R x B x@ . 

3. At =x x , apply the nonlinear feedback control 
 1( ) ( ) ( ) ( )T−= −u x R x B x P x x ,  (5) 

so that the SDRE-controlled trajectory is the solution of 
 ( ) [ ( ) ( ) ( )] ( )t t= −x A x S x P x x& .  (6) 

     Theorem 1 (SDRE Stability [2]). Consider system 
(1) with feedback control (5) applied, where n∈x ΅  
( 1n > ) and ( )P x  is the unique, symmetric, positive-
semidefinite, pointwise-stabilizing solution of the SDRE 
(4). Then the origin of the resulting closed-loop SDRE-
controlled system is locally asymptotically stable. 
     Theorem 2 (SDRE Optimality [2]). Under stability of 
the nonlinear multivariable system (1) by SDRE 
feedback (4) and (5), the necessary optimality condition 

0H∂
∂ =u  is always satisfied, whereas H∂

∂= − x
&λ  is 

asymptotically satisfied. If the optimal cost (value) 
function ( )V x  has a gradient of the form ( )P x x , then 

H∂
∂= − x

&λ  is also satisfied if, and only if, the matrix 
[ ( ) ]∂

∂x P x x  is symmetric. The control (5) then generates 
the global optimal feedback control with respect to (2). 
     Theorem 3 (Scalar Problem [2]). In the scalar case 
( 1n = ), the origin is globally asymptotically stable. In 
addition, the symmetry of [ ( ) ]∂

∂x P x x  for the necessary 
optimality conditions (4) is always satisfied, and so the 
globally asymptotically stabilizing SDRE feedback 
solution is also (globally) optimal on 1΅ . 
 
 
3.2 The Nonlinear Tracking Problem 
Regardless of the undeveloped theory of infinite-time LQ 
optimal tracking control, a good approximation can be 
developed for excessively large ft . The SDRE tracking 
algorithm can then be stated based on this approximate 
relation as follows: 
     Algorithm 2 (Nonlinear optimal tracking SDRE 
feedback control law). 

1. Starting at time 0 0t = , with the initial state 

0 0( )t =x x , evaluate ( )A x , ( )B x , ( )Q x  and ( )R x  at 
the current state =x x  at each sampling instant. 

2. At each point x  along the trajectory ( )tx , find 
the positive-definite solution of the infinite-time SDRE 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T+ + − =C x Q x C x P x A x A x P x P x S x P x 0 (7) 
and the linear vector differential equation 

 ( ) [ ( ) ( ) ( )] ( ) ( ) ( ) ( )T Tt t t= − − −s A x S x P x s C x Q x z& .  (8) 
3. At =x x , apply the nonlinear feedback control 
 1( ) ( ) ( )[ ( ) ( ) ( )]T t t−= − −u x R x B x P x x s ,  (9) 

so that the SDRE-controlled trajectory is the solution of 
 ( ) [ ( ) ( ) ( )] ( ) ( ) ( )t t t= − +x A x S x P x x S x s& .  (10) 

     Remark 1. In the special case when ( )t =z 0  in 
Algorithm 2, the cost functional (2) (with =F 0 ) 
simplifies to the LQ output-regulator problem, which 
requires bringing and keeping the output ( )ty  “near” 
zero. Additionally with n n×=C I , the tracking problem 
(2) reduces to the LQ state-regulator problem. Hence, 
the corresponding optimal regulator system, obtained by 
setting ( )t =s 0  in the set of equations (8)-(10), is 
equivalent to (6) in Algorithm 1. 
 
 
4   ASRE Theory 
The proposed ASRE theory is formulated using classical 
results of the finite-time LQ optimal control problem, by 
generalizing these classical results to the nonlinear-
nonquadratic optimization problem given by (1) and (2). 
Synonymous to SDRE theory, the application of the 
ASRE algorithm first requires representing the general 
nonlinear system (1) in the linear-like, state-dependent 
form (3). Let us now formally state the basic conditions 
required for the ASRE methodology. 
     Hypotheses 2. 

(B1) ( )⋅A , ( )⋅B and ( )⋅C  are locally Lipschitz 
continuous in their arguments (in this case, only x ). 

(B2) ( )F x  and ( )Q x  are positive-semidefinite, 
and ( )R x  is positive-definite n∀ ∈x ΅ . 
     Eqs. (3) can now be replaced with the corresponding 
sequence of LTV problems 

[ ] [ 1] [ ] [ 1] [ ] [ ]
0 0

[ ] [ 1] [ ]

( ) ( ( )) ( ) ( ( )) ( ), ( )

( ) ( ( )) ( )

i i i i i i

i i i

t t t t t t

t t t

− −

−

⎫= + = ⎪
⎬

= ⎪⎭

x A x x B x u x x

y C x x

&
(11) 

for 0,1,i = K , where the sequence is initiated at 0i =  
with the initial guess [ 1]

0( )i t− =x x  for the first iteration. 
     Theorem 4 ([3]). Under (B1) of Hypotheses 2, the 
sequences (11) converge uniformly on 0[ , ]t t  to the 
unique finite bounded solution of (3). 
     Remark 2. The remarkable fact is that (11) provides 
a universal representation, and is equivalent to the 
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nonlinear dynamics (3) (that is, (1)) in that the proposed 
LTV problems provide a global linearization to the 
original nonlinear problem, as opposed to the usual 
linear methods which are only local in their 
applicability. Therefore, assuming that the control input 

( )tu  is known in advance, the solution to the nonlinear 
problem (1) is given by the limit of the LTV sequences 
in (11). For engineering purposes, however, the systems 
given in (11) would actually achieve convergence when 
the sequence is near enough to the exact solution, which 
merely requires that the error as measured by some 
norm should become small, say [ ] [ 1]|| ( ) ( ) ||i it t σ−− ≤x x , 
where σ  is some predefined error bound (a constant). 
     Instead of assuming that ( )tu  is an open-loop input, 
which is known a priori, let us now present the ASRE 
theory for constructing optimal feedback controls for the 
nonlinear problem (1), where the optimization problem 
is chosen to minimize the finite-time horizon Bolza cost 
functional (2). In [4], stabilization (or regulation) was 
set as the target problem, whereas the tracking problem 
was synthesized in [5]. For ASRE control synthesis 
presented in this paper, tracking control is set as the 
target problem, since it reduces to the problem of output 
regulation in the special case when the desired output 
trajectory ( )t ≡z 0 , which further simplifies to the 
problem of state regulation if, in addition, the 
measurement sensitivity matrix n n×≡C I . The 
corresponding sequence of LQ costs, from (2), are 

{ }
0

[ ] [ 1] [ ]1
2

[ ] [ 1] [ ] [ ] [ 1] [ ]1
2

[ ] [ 1] [ ]

( ) ( ( )) ( )

( ) ( ( )) ( ) ( ) ( ( )) ( ) ,

( ) ( ) ( ( )) ( ).

f

i T i i
f f f

t i T i i i T i i
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J t t t

t t t t t t dt

t t t t

−

− −

−

⎫=
⎪⎪+ + ⎬
⎪
⎪= − ⎭

∫

e F x e

e Q x e u R x u

e z C x x

(12) 
Since the sequence of optimal control problems (11) and 
(12) are each LTV and quadratic, the solution can be 
approached by classical finite-time LQ optimal control 
theory. Therefore, the ASRE methodology for the 
nonlinear-nonquadratic optimal control problem (1) and 
(2) can be stated based upon this formulation, where the 
well-established results of finite-time LQ optimal control 
theory are generalized to give the proposed line of 
attack. Hence, the optimal tracking control law for the 
nonlinear-nonquadratic problem is given as follows: 
     Algorithm 3 (Nonlinear optimal tracking ASRE 
feedback control law [5]). 

1. Given ft , start at 0i =  with [ 1]
0( )i t− =x x , and 

use standard numerical procedures to integrate the 
following respective Approximating Sequence of Riccati 
Equations (ASRE) and sequence of linear vector 
differential equations from ft t=  backwards in time by 
taking negative time-steps: 

[ ] [ 1] [ 1] [ 1] [ ] [ 1]

[ 1] [ ] [ ] [ 1] [ ]

( ) ( ( )) ( ( )) ( ( )) ( ) ( ( ))
( ( )) ( ) ( ) ( ( )) ( ),

i T i i i i i

T i i i i i

t t t t t t
t t t t t

− − − −

− −

=− −

− +

P C x Q x C x P A x
A x P P S x P

&

   (13) 

 
( )

[ ] [ 1] [ 1] [ ] [ ]

[ 1] [ 1]

( ) [ ( ( )) ( ( )) ( )] ( )
( ( )) ( ( )) ,

i i i i T i

T i i

t t t t t
t t t

− −

− −

= − −

−

s A x S x P s
C x Q x z

&
  (14) 

where [ 1] [ 1] 1 [ 1] [ 1]( ( )) ( ( )) ( ( )) ( ( ))i i i T it t t t− − − − −S x B x R x B x@ , 
and the respective boundary conditions of (13), (14) are 

[ ] [ 1] [ 1] [ 1]

[ ] [ 1] [ 1]

( ) ( ( )) ( ( )) ( ( )),  and

( ) ( ( )) ( ( )) ( ).

i T i i i
f f f f

i T i i
f f f f

t t t t

t t t t

− − −

− −

=

=

P C x F x C x

s C x F x z
 

2. At each sampling instant, evaluate the respective 
LTV state and control trajectories 

 
[ ] [ 1] [ 1] [ ] [ ]

[ 1] [ ]

( ) [ ( ( )) ( ( )) ( )] ( )
( ( )) ( ),

i i i i i

i i

t t t t t
t t

− −

−

= −

+

x A x S x P x
S x s

&
  (15) 

[ ] 1 [ 1] [ 1] [ ] [ ] [ ]( ) ( ( )) ( ( )){ ( ) ( ) ( )}i i T i i i it t t t t t− − −= − −u R x B x P x s   (16) 
forwards in time, starting at 0t t=  with [ ]

0 0( )i t =x x . 
3. Repeat steps 1 and 2 for 1i i= + , where [ 1] ( )i t−x  

for 0i >  presume the corresponding values of ( )tx  
from the preceding sequence at each sampling instant. 

4. If [ ] [ 1]|| ( ) ( ) ||k kt t σ−− ≤x x  for some desired error 
bound 0σ > , which is defined a priori, stop the 
iteration and apply the ASRE feedback gain 

1 [ ]( ( ), ) ( ) ( ) ( )T kt t t−−K x R x B x P@ , 
together with [ ] ( )k ts , to the actual nonlinear system (1). 
     Theorem 5 ([4],[5]). Given the nonlinear optimal 
control problem (1) and (2), the sequence of LQ and 
time-varying optimal control problems (11) and (12) can 
be introduced. If the control is chosen to minimize (16), 
that is, the corresponding LQ tracking solution 
associated with each LTV quadratic problem then, by 
Hypotheses 2, the sequences of LTV feedback control 
systems (13)-(16) converge uniformly on 0[ , ]t t , which 
follows from the fact that [ ] [ 1]lim || ( ) ( ) || 0i i

i t t−
→∞ − =x x  

and [ ] [ 1]lim || ( ) ( ) || 0i i
i t t−
→∞ − =u u . 

     Remark 3. In solving the ASRE (13) for [ ] ( )i tP&  in 
Algorithm 3, note that [ ] [ 1]( ) ( ( ), )i it t t−=P P x . Therefore, 
the limit of the ASRE controls (16) converges to the 
nonlinear, nonautonomous feedback control law 

1( ( ), ) ( ) ( ){ ( ( ), ) ( ) ( ( ), )}Tt t t t t t t−= − −u x R x B x P x x s x , 
which is unique. The local Lipschitz assumption (B1) 
assures the existence of a continuous solution u  here as 
shown in [4]. Therefore, x& as given by the ASRE 
controlled system is a continuous function of x  and t . 
     Remark 4. The ASRE algorithm for the state-
regulator problem can be generated from Algorithm 3 
by setting ( )t =z 0  and ( ) n n×=C x I , thus canceling the 
tracking features of the method, since s  becomes zero. 
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5   Thrust-Vectored Ducted Fan Aircraft 
The effectiveness of the SDRE and ASRE optimal 
controllers will now be illustrated in a realistic flight 
control problem, where the model is representative of the 
longitudinal dynamics of a thrust-vectored aircraft. This 
example is concerned with high-performance jet aircraft 
performing aggressive maneuvers, where the 
nonlinearities must be exploited to enhance performance. 
Very few design methods are capable of achieving 
efficient control for this class of systems. Vectored 
propulsion systems provide the ideal platform for 
improving high-performance capabilities of modern jet 
aircraft, such as performing rapid transition between 
hover, forward flight and reverse flight, as well as other 
aggressive flight maneuvers. Fig. 1 depicts a simple 
planar model of a ducted fan engine for controlling 
either a Harier in hover mode or a thrust-vectored 
aircraft such as F18-HARV or X-31 in forward flight. If 
( , , )x y θ  denote the horizontal, vertical, and angular 
position (with the vertical), respectively, of a point on 
the main axis of the fan, and if the aerodynamic effects 
of lift are ignored, the pitch dynamics corresponding to 
various flight modes of the system are given by (see [7] 
for details) 

1 2

1 2

1

cos sin
sin cos

.

x

y g

m x dx f f
m y dy f f m g

J rf

θ θ
θ θ

θ

= − + −

= − + + −

=

&& &
&& &
&&

 

The forces 1f  and 2f  act perpendicular and parallel to 
the axis of the fan, respectively, with 1f  acting at a 
distance r  from the center of mass. Typically 2f  is 
much larger than 1f . The parameters ( , )x ym m  are 
inertial masses of the fan in the ( , )x y  direction, gm g  is 
the weight of the fan, J  its moment of inertia, and g  is 
the gravitational constant. The drag terms are modeled as 
viscous friction with d  as the viscous friction 
coefficient. 

 

 
Fig.1. Simplified model of a ducted fan engine for 
thrust-vectored aircraft 

     Following [7], the inputs to the system can be defined 
as 1 1u f@  and 2 2 gu f m g−@ , where the control 2u  has 
been shifted to compensate for gravity, so that the origin 
of the system is an equilibrium point when there is zero 
input. Therefore, with 1u  and 2u  as control inputs, the 
equations of motion of the planar ducted fan become 

( )
1 2

1 2

1

sin cos sin

cos 1 sin cos

,

x g

y g

m x m g dx u u

m y m g dy u u

J ru

θ θ θ

θ θ θ

θ

= − − + −

= − − + +

=

&& &

&& &
&&

 

which have nonlinearities similar to those found on 
thrust-vectored aircraft, sharing many of the basic 
nonlinear characteristics of more complicated flight 
control systems. This particular model has been used for 
several studies in nonlinear stabilization, where 
numerous design tools that emerged relatively recently 
have been utilized and compared for addressing optimal 
performance and stability of nonlinear systems (see [8] 
and [9] for instance). Popular design techniques include 
Jacobian linearization, feedback linearization, the use of 
control Lyapunov functions, receding horizon control, 
linear parameter varying methods, recursive 
backstepping, and other hybrid approaches. Although 
these methods provide powerful tools of designing 
stabilizing controllers for nonlinear systems, in general 
there are no guarantees on the performance of the 
resulting closed-loop systems, which is highly problem 
dependent and range widely from near optimal to very 
poor for any given method, as illustrated in [8] and [9] 
for the problem of stabilizing the thrust-vectored aircraft. 
However, nonlinear theory directed at stabilization about 
a single operating point may sometimes turn out to be a 
waste of effort since linear controllers, which generally 
have a great domain of attraction for stabilizing a single 
equilibrium point of nonlinear plants, can typically 
achieve the same objective. For nonlinear systems, and 
particularly motion control systems, the problem of 
tracking is considerably harder and, while reducing 
control effort, gives a more aggressive response than 
point stabilization around a changing output. Therefore, 
the application of the SDRE and ASRE tracking 
methodologies (Algorithms 2 and 3) will now be 
demonstrated on the ducted fan model. 
     Consider the problem of following a commanded 
trajectory ( )tz  while minimizing a quadratic 
performance index in form (2), where 

[ ]Tx y x yθ θ=x && &  and 1 2[ ]Tu u=u . 
The control objective is to track both x  and y  
trajectories. Therefore, the tracking output [ ]Tx y=y , 
where the weighting matrices are chosen as =F 0 , 

2 2×=R I  and 3diag{1,10 }=Q . Clearly, with sinθ
θ  and 

cos 1θ
θ
−  well-defined, the factorization of the planar ducted 
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fan state-space model in form (3) becomes obvious. The 
specific numerical values for model parameters are given 
by 0.46 kggm = , 4.9 kgxm = , 8.5 kgym = , 0.12 mr = , 

20.05 kg mJ = , 1.2d =  and, of course, 29.81 m sg −= . 
Simulation results of the closed-loop system in Fig. 2 
illustrate the performance achieved using the SDRE and 
ASRE nonlinear tracking algorithms with a desired 
tracking output ( ) [0.5 0.1sin(0.1 )]Tt t t=z , which 
corresponds to a complex trajectory of commanding the 
fan to fly rapidly in the horizontal direction at varying 
altitude, starting from a challenging initial condition 

(0) [0 0 4 0 0 0]Tπ= −x . 
This complex maneuver demonstrates the effectiveness 
of the proposed controllers, where the commanded 
trajectory takes the fan far from hover, which is the point 
linear controllers are usually designed. Therefore, for 
aggressive trajectories over a wide operating envelope, 
these controllers perform extremely well, albeit the 
SDRE-controlled trajectory appears to lag behind the 
commanded input. Nevertheless, the on-line computation 
of the SDRE scheme makes this technique ideal for real-
time trajectory generation, that is, when the desired 
trajectory is not known ahead of time, so that the 
controller must perform all operations in “real-time”. 
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Fig.2. State trajectories and control effort 
 
 
6   Conclusion 
This paper presented a review of synthesizing feedback 
controllers for nonlinear optimal control problems using 
two highly effective frameworks, namely, 
a) State-Dependent Riccati Equation, and 
b) Approximating Sequence of Riccati Equations. 
Both methods are based upon recasting the nonlinear 
plant into a linear-like, state-dependent form, with the 
solutions characterized by solving algebraic Riccati 
equations. The SDRE technique requires determination 
of nonlinear optimal feedback controls on-line (at each 

point) as the solution proceeds. This renders the SDRE 
algorithm ideal for real-time implementation. The basic 
idea behind ASRE methodology, on the other hand, is to 
use an iteration technique to transform the associated 
deterministic nonlinear-nonquadratic optimal control 
problem into a convergent sequence of time-varying LQ 
optimal control problems. These can then be solved by 
classical methods, leading to an optimal control for the 
nonlinear system. Consequently, feedback controls by 
ASRE strategy need to be determined off-line. Each 
method provides an effective algorithm based on reliable 
mechanized procedures of only solving algebraic Riccati 
equations, which are then used for constructing 
nonlinear optimal state-feedback controllers. This is 
achieved by extending the simple, but valuable, design 
tools of classical LQ optimal control theory to nonlinear 
systems, which thereby results in computationally simple 
nonlinear design schemes that overcome several 
difficulties and shortcomings of LQ designs. 
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