
On Machine Dependency in Shop Scheduling

Evgeny Shchepin∗ Nodari Vakhania†

Abstract

One of the main restrictions in scheduling problems are the machine (resource) re-
strictions: each machine can perform at most one job at a time. We explore machine
dependencies is shop scheduling problems representing them as graphs. Our study
shows that the structure of machine dependency graphs is important in the complex-
ity analysis of shop scheduling problems. We call acyclic a shop scheduling problem
with the acyclic machine dependency graph. Here we first consider the periodic job-
shop scheduling problem and present a linear-time algorithm for its subclass which
machine dependency graphs are allowed to have only simple so-called parti-colored
cycles. This result is tight as the trivial extension of the problem becomes NP-hard.
We show that the acyclic preemptive open-shop problem with at most m− 2 preemp-
tions can be solved in linear time. This result is also tight as the same problem with
at most m − 3 preemptions is NP-hard. We also show that very simple acyclic shop
scheduling problems are NP-hard; for example, any flow-shop with a single job with
three operations and the rest of the jobs with a single non-zero length operation is
NP-hard.

Key words: algorithm, shop scheduling, NP-hardness, machine dependency graph

1 Introduction

In this paper we explore machine dependencies is shop scheduling problems representing
them as graphs. Our study shows that the structure of these graphs is important in the
complexity analysis of shop scheduling problems. We call acyclic a shop scheduling prob-
lem with an acyclic machine dependency graph. We come across the polynomially solv-
able cases of several shop scheduling problems: periodic job-shop scheduling, preemptive
open-shop scheduling and acyclic job-shop scheduling problems. We also complete known
complexity results on shop scheduling showing that very simple acyclic shop scheduling
problems are NP-hard.

In a scheduling problem n jobs need to be processed by m machines. Certain restric-
tions on how this can be done define the set of all feasible schedules. One of the principle
restrictions are resource (machine) restrictions: each machine can handle no more than
one job at a time. Likewise, we can have precedence relations between the jobs, i.e., the
job set can be partially ordered (some jobs cannot be started before the other are not com-
pleted). Both type of restrictions imply that the jobs have to be processed in a sequential
manner. The precedence restrictions are traditionally represented by directed graphs, the
so-called precedence (task) graphs. A machine dependency graph (dependency graph for

∗Steklov Math. Inst., 117966, Gubkina 8, Moscow, Russia E-mail: scepin@mian.ras.su. Partially
supported by CONACYT grant 32728E and Russian Foundation of Basic Researches grant 99-01-00009

†Science Faculty, State University of Morelos, Av. Universidad 1001, Cuernavaca 62210, Morelos,
Mexico. Inst. of Computational Math., Akuri 8, Tbilisi 93, Georgia. E-mail: nodari@servm.fc.uaem.mx

1

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp323-331)

short) represents machine restrictions as follows: each node represents a unique machine
and if there is an edge (M, P) labelled with job J , then job J has to be scheduled (or is
scheduled) on both machines M and P . Depending on a particular scheduling problem, a
machine dependency graph may represent a problem instance or already some distribution
of jobs on machines (a schedule characteristic). For example, in shop scheduling problems
each job J consists of a finite number of operations and for each operation there is given
particular machine on which it has to be scheduled. Hence, there is a unique machine
dependency graph representing each problem instance (whereas there are infinitely many
instances represented by this graph). On the other hand, in preemptive multiprocessor
scheduling problems, though a job is not initially split into operations, it can be split into
different parts and these parts can be assigned to different machines. In this case the ma-
chine dependency graph will represent a particular distribution of jobs on machines and
may vary from a schedule to a schedule. (We refer the reader to Shchepin & Vakhania [8]
and [10] for more details.) Similarly as the structure of a precedence graph is important
in the complexity analysis of many scheduling problems, the structure of a machine de-
pendency graph is also important is this analysis. We shall call a shop scheduling problem
acyclic if to each its instance an acyclic machine dependency graph corresponds. Here we
focus on shop scheduling problems, and consider periodic and (traditional) non-periodic,
or as we also call finite shop scheduling problems.

There is a considerable list of the polynomially solvable open-shop and flow-shop schedul-
ing problems with unit-length operations. If operation lengths are arbitrary, open-shop
problem with 2 machines is solvable in linear time, whereas it becomes NP-hard if either
there are 3 machines or 3 jobs Gonzalez & Sahni [1]. It was recently shown that open-
shop problem remains NP-hard if it is acyclic and at most m− 3 preemptions are allowed
Shchepin & Vakhania [11]. In job-shop scheduling, if there are only two machines and two
operations per job, the problem is solvable in O(n log n) time Jackson [5]. The problem
can be solved in time linear in the total number of operations with two machines and
unit-length operations Hefetz & Adiri [4]. With two machines, if we allow jobs with three
operations, or with three machines even if there are no more than two operations per job,
the problem becomes NP-hard Lenstra et al. [7] and Gonzalez & Sahni [2].

Periodic shop scheduling is easer. For example, while open-shop problem O//Cmax

is known to be NP-hard, it is quite straightforward to solve its periodic version
O, periodic//Cmax. Scheduling periodic 2-machine job shop in which each job is allowed
to have 3 operations is already NP-hard, but periodic job-shop problem can be solved in
linear time if each job has at most two operations Hall et al. [3]. As we show here, a
wider subclass of periodic job-shop problem can be solved in linear time. To each instance
from this subclass, a machine dependency graph which may contain only special type of
simple cycles corresponds; we call these cycles parti-colored and we call the corresponding
scheduling problem parti-cyclic job-shop, abbreviated as J, periodic/parti − cyclic/Cmax.
In terms of the number of operations, this implies that for any 2 jobs with 3 or more oper-
ations there can be at most 1 couple of operations (of different jobs) have to be scheduled
on the same machine. We show that the class of simplest shop instances for which this
condition does not hold, is NP-hard. Preemptive open-shop scheduling problem is known
to be solvable in polynomial (in the worst case in O(n4)) time by the early algorithm
of Gonzales & Sahni [1] imposing up to O(n2m) preemptions. We propose liner-time al-
gorithm for the acyclic version O/acyclic, pmtn/Cmax of this problem imposing at most
m − 2 preemptions. As already noted, this problem becomes NP-hard if the number of
preemptions is restricted to m− 3. We also show that very simple classes of acyclic shop
instances are NP-hard; for example, any flow-shop with a single job with 3 operations and
with the rest of the jobs with a single non-zero operation is NP-hard. Due to the space
limitation, some of the proofs are omitted (they are available in the complete version).

2

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp323-331)

2 Glossary of basic concepts and notations

We will deal with three basic shop scheduling problems and will occasionally use J ,M
to denote a shop scheduling instance with the set of jobs J = {J1, ..., Jn} and the set of
machines M = {M1, . . . , Mm}. In an instance of the job-shop J//Cmax each job from J
is an ordered set of elements called operations. Each operation is to be scheduled on one
particular machine from M. J j

i is the operation of job J j to be performed on machine
Mi (we shall deal with job-shops in which every job has no more than one operation to
be scheduled on a particular machine). We will write J j

i → J j
k if J j

i immediately precedes
J j

k according to the operation order in J j . Operation J j
i has a processing time or length

pj
i , which is the amount of time it takes once scheduled on machine Mi. J j

i is a dummy
operation of job J j on machine Mi if pj

i = 0; further on we will use ”operation” exclusively
for a non-dummy operation.

The open-shop O//Cmax is a special case of the job-shop in which there is no precedence
order between the operations of any job, these operations can be processed in an arbitrary
order on their corresponding machines. The flow-shop F//Cmax is a shop scheduling
problem in which the operation order in all jobs is the same, i.e., every job is processed
by the machines in the same predetermined order.

A restriction J ′,M′ of a shop instance J ,M is another shop instance with M′ ⊂ M
and J ′ ⊆ J ; J ,M is an extension of J ′,M′. If J j

i ∈ J j and Mi ∈M\M′, operation J j
i

disappears in J ′,M′; a job will completely disappear if all its (non-dummy) operations
disappear. A shop instance J ′,M′ is an elementary extension of a shop instance J ,M if
J ′,M′ is an extension of J ,M such that all jobs from J ′ \ J are elementary jobs that
is, they consist of a single operation.

A schedule indicates which job (operation) is in process on each machine at any time
moment; if for some machine no operation for some time moment is specified, this machine
is idle. Since a machine at any moment can process at most one job, a schedule can be
seen as a mapping from M×R+ to J , or a graph of such a mapping, i.e., a subset of the
product J ×M× R+. For a given schedule σ, (J,M, t) ∈ σ signifies that in σ job J is
processed by machine M at the moment t. For a given pair (J,M) ∈ J ×M, σ(J,M)
is the set of all time moments at which machine M processes job J , i.e., σ(J,M) = {t ∈
R+ | (J,M, t) ∈ σ}. As already noted, for each M ∈ M and t ∈ R+, the job set σ(M, t)
defined as σ(M, t) = {J ∈ J | (J,M, t) ∈ σ} contains at most one element, i.e. σ is
sequential on machine M . Likewise, σ is sequential on job J if J is processed by at most
one machine at any time moment t (different operations of J do not overlap in time on
different machines), i.e., the machine set σ(J, t) = {M ∈ M | (J,M, t) ∈ σ} contains at
most one element. A sequential schedule is a one which is sequential on all jobs (and all
machines).

We consider two sorts of schedules, periodic (infinite) schedules and non-periodic (finite)
schedules. A finite schedule σ is a subset of J ×M×[0, T), for some T ∈ R+. The minimal
such T for σ is called the makespan of σ and is denoted by ‖σ‖. A periodic schedule is
defined as a pair (σ, T), where σ is an (infinite) schedule and T ∈ R+ is the period of σ.
The period T is the minimal non-negative real number, such that: (a) at any time moment
t, (J,M, t) ∈ σ implies (J,M, t + T) ∈ σ; (b) each job J is completely processed in the
time interval [s, s + T), where s is the starting time of the earliest schedule operation of
job J . Due to the similarity between the period of a periodic schedule and the makespan
of a finite schedule, the period T of σ will be also denoted by ‖σ‖.

If σ is sequential on job J , different J-components do not intersect in time. Therefore,
they are naturally ordered. Suppose [p, q) and [p′, q′) are J-components corresponding to
different operations of job J . We will say that [p′, q′) is a continuation of [p, q) if q ≤ p′ and
there is no other J-component, scheduled within the interval [q, p′), equivalently, there is

3

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp323-331)

no J-switching point between q and p′. We will say that σ is continuous on job J if it is
sequential on J and the continuation of every J-component [p′, q′) is another J-component
[p, q) with q = p′ (except for the latest scheduled operation of J). Similarly, σ is continuous
on machine M , if it is sequential on M and for every J-component [p, q), different from the
last scheduled one, there is some J ′-component [p′, q′) on M , with p′ = q. A continuous
schedule is a one which is continuous on all machines and jobs.

A (finite or periodic) schedule σ is called feasible for a job-shop J ,M if it satisfies
the following conditions: (1) It is sequential (on jobs of J and machines of M); (2)
|σ(J j ,Mi)| = |J j

i | for all i ≤ m and j ≤ n; (3) J j
i → J j

k implies that the continuation of
any (J j , Mi)-component of σ is a (J j ,Mk)-component; (4) For any job J and any machine
M the length of the (J,M)-component is |σ(J,M)|. (2) provides that operation J j

i is
completely processed. (3) provides that the precedence relations between the operations
of each job are respected (this condition also provides that σ is sequential on each job).
(4) provides that operations are processed without any preemptions.

A feasible schedule σ with the minimal (makespan/period) ‖σ‖ is called optimal. The
following lemma holds because any feasible schedule is sequential on both, machines and
jobs:

Lemma 1 If σ is feasible then ‖σ‖ ≥ ‖M‖ and ‖σ‖ ≥ ‖J ‖. Hence, σ is optimal if
‖σ‖ = max{‖M‖, ‖J ‖}.

For a positive number x, the x-shifting of a schedule σ is a schedule σx, such that
σx = {(J,M, t) | (J,M, t − x) ∈ σ}. For a negative x, σx is defined similarly with the
additional condition that the starting time of an earliest scheduled job in σ is to be no
less than |x|.

We will say that a schedule σ′ is obtained from another schedule σ by inserting job J∗
on machine M0 into the time interval [p, q) if for any J and M :
1) σ(J,M) = σ′(J,M) if M 6= M0;
2) (J,M0, t) ∈ σ iff (J,M0, t) ∈ σ′, for any t < p;
3) (J,M0, t− (q − p)) ∈ σ iff (J,M0, t) ∈ σ′, for any t ≥ q;
4) σ′(M0, t) = J∗, for any t ∈ [p, q).

3 Machine Dependency Graph

Recall that a (machine) dependency graph G represents machine dependencies (nodes
representing the machines and edges representing the jobs shared by the corresponding
couple of machines). For an instance of the job-shop scheduling problem J ,M, there is
an edge (Ml,Mk) in this graph labelled by job J j , iff J j

l → J j
k . The J-component of G,

G[J] is its subgraph formed by the union of all edges of G, labelled by job J . It is easily
seen that each J-component forms an acyclic path without any branching in G and that
only non-elementary jobs from J are presented in G (i.e. associated with an edge of G).

A shop scheduling problem is said to be acyclic if the dependency graph of its any
instance is acyclic. We will see now that operation order does not influence on the acyclicity
of G. More precisely, if the dependency graph of some instance of job-shop is acyclic
then the dependency graph of any other instance of job-shop obtained from the former
instance by changing arbitrarily the operation order in all jobs is also acyclic. Equivalently,
any job-shop instance, obtained from some acyclic open-shop instance by imposing some
operation order in each job is acyclic, and vice-versa. Using this fact, we can define
the machine dependency graph for an open-shop instance as that of any corresponding
job-shop instance.

Observation 1 All elementary extensions of any shop instance have the same dependency

4

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp323-331)

