
On Machine Dependency in Shop Scheduling

Evgeny Shchepin∗ Nodari Vakhania†

Abstract

One of the main restrictions in scheduling problems are the machine (resource) re-
strictions: each machine can perform at most one job at a time. We explore machine
dependencies is shop scheduling problems representing them as graphs. Our study
shows that the structure of machine dependency graphs is important in the complex-
ity analysis of shop scheduling problems. We call acyclic a shop scheduling problem
with the acyclic machine dependency graph. Here we first consider the periodic job-
shop scheduling problem and present a linear-time algorithm for its subclass which
machine dependency graphs are allowed to have only simple so-called parti-colored
cycles. This result is tight as the trivial extension of the problem becomes NP-hard.
We show that the acyclic preemptive open-shop problem with at most m− 2 preemp-
tions can be solved in linear time. This result is also tight as the same problem with
at most m − 3 preemptions is NP-hard. We also show that very simple acyclic shop
scheduling problems are NP-hard; for example, any flow-shop with a single job with
three operations and the rest of the jobs with a single non-zero length operation is
NP-hard.

Key words: algorithm, shop scheduling, NP-hardness, machine dependency graph

1 Introduction

In this paper we explore machine dependencies is shop scheduling problems representing
them as graphs. Our study shows that the structure of these graphs is important in the
complexity analysis of shop scheduling problems. We call acyclic a shop scheduling prob-
lem with an acyclic machine dependency graph. We come across the polynomially solv-
able cases of several shop scheduling problems: periodic job-shop scheduling, preemptive
open-shop scheduling and acyclic job-shop scheduling problems. We also complete known
complexity results on shop scheduling showing that very simple acyclic shop scheduling
problems are NP-hard.

In a scheduling problem n jobs need to be processed by m machines. Certain restric-
tions on how this can be done define the set of all feasible schedules. One of the principle
restrictions are resource (machine) restrictions: each machine can handle no more than
one job at a time. Likewise, we can have precedence relations between the jobs, i.e., the
job set can be partially ordered (some jobs cannot be started before the other are not com-
pleted). Both type of restrictions imply that the jobs have to be processed in a sequential
manner. The precedence restrictions are traditionally represented by directed graphs, the
so-called precedence (task) graphs. A machine dependency graph (dependency graph for

∗Steklov Math. Inst., 117966, Gubkina 8, Moscow, Russia E-mail: scepin@mian.ras.su. Partially
supported by CONACYT grant 32728E and Russian Foundation of Basic Researches grant 99-01-00009

†Science Faculty, State University of Morelos, Av. Universidad 1001, Cuernavaca 62210, Morelos,
Mexico. Inst. of Computational Math., Akuri 8, Tbilisi 93, Georgia. E-mail: nodari@servm.fc.uaem.mx

1

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp323-331)

short) represents machine restrictions as follows: each node represents a unique machine
and if there is an edge (M, P) labelled with job J , then job J has to be scheduled (or is
scheduled) on both machines M and P . Depending on a particular scheduling problem, a
machine dependency graph may represent a problem instance or already some distribution
of jobs on machines (a schedule characteristic). For example, in shop scheduling problems
each job J consists of a finite number of operations and for each operation there is given
particular machine on which it has to be scheduled. Hence, there is a unique machine
dependency graph representing each problem instance (whereas there are infinitely many
instances represented by this graph). On the other hand, in preemptive multiprocessor
scheduling problems, though a job is not initially split into operations, it can be split into
different parts and these parts can be assigned to different machines. In this case the ma-
chine dependency graph will represent a particular distribution of jobs on machines and
may vary from a schedule to a schedule. (We refer the reader to Shchepin & Vakhania [8]
and [10] for more details.) Similarly as the structure of a precedence graph is important
in the complexity analysis of many scheduling problems, the structure of a machine de-
pendency graph is also important is this analysis. We shall call a shop scheduling problem
acyclic if to each its instance an acyclic machine dependency graph corresponds. Here we
focus on shop scheduling problems, and consider periodic and (traditional) non-periodic,
or as we also call finite shop scheduling problems.

There is a considerable list of the polynomially solvable open-shop and flow-shop schedul-
ing problems with unit-length operations. If operation lengths are arbitrary, open-shop
problem with 2 machines is solvable in linear time, whereas it becomes NP-hard if either
there are 3 machines or 3 jobs Gonzalez & Sahni [1]. It was recently shown that open-
shop problem remains NP-hard if it is acyclic and at most m− 3 preemptions are allowed
Shchepin & Vakhania [11]. In job-shop scheduling, if there are only two machines and two
operations per job, the problem is solvable in O(n log n) time Jackson [5]. The problem
can be solved in time linear in the total number of operations with two machines and
unit-length operations Hefetz & Adiri [4]. With two machines, if we allow jobs with three
operations, or with three machines even if there are no more than two operations per job,
the problem becomes NP-hard Lenstra et al. [7] and Gonzalez & Sahni [2].

Periodic shop scheduling is easer. For example, while open-shop problem O//Cmax

is known to be NP-hard, it is quite straightforward to solve its periodic version
O, periodic//Cmax. Scheduling periodic 2-machine job shop in which each job is allowed
to have 3 operations is already NP-hard, but periodic job-shop problem can be solved in
linear time if each job has at most two operations Hall et al. [3]. As we show here, a
wider subclass of periodic job-shop problem can be solved in linear time. To each instance
from this subclass, a machine dependency graph which may contain only special type of
simple cycles corresponds; we call these cycles parti-colored and we call the corresponding
scheduling problem parti-cyclic job-shop, abbreviated as J, periodic/parti − cyclic/Cmax.
In terms of the number of operations, this implies that for any 2 jobs with 3 or more oper-
ations there can be at most 1 couple of operations (of different jobs) have to be scheduled
on the same machine. We show that the class of simplest shop instances for which this
condition does not hold, is NP-hard. Preemptive open-shop scheduling problem is known
to be solvable in polynomial (in the worst case in O(n4)) time by the early algorithm
of Gonzales & Sahni [1] imposing up to O(n2m) preemptions. We propose liner-time al-
gorithm for the acyclic version O/acyclic, pmtn/Cmax of this problem imposing at most
m − 2 preemptions. As already noted, this problem becomes NP-hard if the number of
preemptions is restricted to m− 3. We also show that very simple classes of acyclic shop
instances are NP-hard; for example, any flow-shop with a single job with 3 operations and
with the rest of the jobs with a single non-zero operation is NP-hard. Due to the space
limitation, some of the proofs are omitted (they are available in the complete version).

2

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp323-331)

2 Glossary of basic concepts and notations

We will deal with three basic shop scheduling problems and will occasionally use J ,M
to denote a shop scheduling instance with the set of jobs J = {J1, ..., Jn} and the set of
machines M = {M1, . . . , Mm}. In an instance of the job-shop J//Cmax each job from J
is an ordered set of elements called operations. Each operation is to be scheduled on one
particular machine from M. J j

i is the operation of job J j to be performed on machine
Mi (we shall deal with job-shops in which every job has no more than one operation to
be scheduled on a particular machine). We will write J j

i → J j
k if J j

i immediately precedes
J j

k according to the operation order in J j . Operation J j
i has a processing time or length

pj
i , which is the amount of time it takes once scheduled on machine Mi. J j

i is a dummy
operation of job J j on machine Mi if pj

i = 0; further on we will use ”operation” exclusively
for a non-dummy operation.

The open-shop O//Cmax is a special case of the job-shop in which there is no precedence
order between the operations of any job, these operations can be processed in an arbitrary
order on their corresponding machines. The flow-shop F//Cmax is a shop scheduling
problem in which the operation order in all jobs is the same, i.e., every job is processed
by the machines in the same predetermined order.

A restriction J ′,M′ of a shop instance J ,M is another shop instance with M′ ⊂ M
and J ′ ⊆ J ; J ,M is an extension of J ′,M′. If J j

i ∈ J j and Mi ∈M\M′, operation J j
i

disappears in J ′,M′; a job will completely disappear if all its (non-dummy) operations
disappear. A shop instance J ′,M′ is an elementary extension of a shop instance J ,M if
J ′,M′ is an extension of J ,M such that all jobs from J ′ \ J are elementary jobs that
is, they consist of a single operation.

A schedule indicates which job (operation) is in process on each machine at any time
moment; if for some machine no operation for some time moment is specified, this machine
is idle. Since a machine at any moment can process at most one job, a schedule can be
seen as a mapping from M×R+ to J , or a graph of such a mapping, i.e., a subset of the
product J ×M× R+. For a given schedule σ, (J,M, t) ∈ σ signifies that in σ job J is
processed by machine M at the moment t. For a given pair (J,M) ∈ J ×M, σ(J,M)
is the set of all time moments at which machine M processes job J , i.e., σ(J,M) = {t ∈
R+ | (J,M, t) ∈ σ}. As already noted, for each M ∈ M and t ∈ R+, the job set σ(M, t)
defined as σ(M, t) = {J ∈ J | (J,M, t) ∈ σ} contains at most one element, i.e. σ is
sequential on machine M . Likewise, σ is sequential on job J if J is processed by at most
one machine at any time moment t (different operations of J do not overlap in time on
different machines), i.e., the machine set σ(J, t) = {M ∈ M | (J,M, t) ∈ σ} contains at
most one element. A sequential schedule is a one which is sequential on all jobs (and all
machines).

We consider two sorts of schedules, periodic (infinite) schedules and non-periodic (finite)
schedules. A finite schedule σ is a subset of J ×M×[0, T), for some T ∈ R+. The minimal
such T for σ is called the makespan of σ and is denoted by ‖σ‖. A periodic schedule is
defined as a pair (σ, T), where σ is an (infinite) schedule and T ∈ R+ is the period of σ.
The period T is the minimal non-negative real number, such that: (a) at any time moment
t, (J,M, t) ∈ σ implies (J,M, t + T) ∈ σ; (b) each job J is completely processed in the
time interval [s, s + T), where s is the starting time of the earliest schedule operation of
job J . Due to the similarity between the period of a periodic schedule and the makespan
of a finite schedule, the period T of σ will be also denoted by ‖σ‖.

If σ is sequential on job J , different J-components do not intersect in time. Therefore,
they are naturally ordered. Suppose [p, q) and [p′, q′) are J-components corresponding to
different operations of job J . We will say that [p′, q′) is a continuation of [p, q) if q ≤ p′ and
there is no other J-component, scheduled within the interval [q, p′), equivalently, there is

3

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp323-331)

no J-switching point between q and p′. We will say that σ is continuous on job J if it is
sequential on J and the continuation of every J-component [p′, q′) is another J-component
[p, q) with q = p′ (except for the latest scheduled operation of J). Similarly, σ is continuous
on machine M , if it is sequential on M and for every J-component [p, q), different from the
last scheduled one, there is some J ′-component [p′, q′) on M , with p′ = q. A continuous
schedule is a one which is continuous on all machines and jobs.

A (finite or periodic) schedule σ is called feasible for a job-shop J ,M if it satisfies
the following conditions: (1) It is sequential (on jobs of J and machines of M); (2)
|σ(J j ,Mi)| = |J j

i | for all i ≤ m and j ≤ n; (3) J j
i → J j

k implies that the continuation of
any (J j , Mi)-component of σ is a (J j ,Mk)-component; (4) For any job J and any machine
M the length of the (J,M)-component is |σ(J,M)|. (2) provides that operation J j

i is
completely processed. (3) provides that the precedence relations between the operations
of each job are respected (this condition also provides that σ is sequential on each job).
(4) provides that operations are processed without any preemptions.

A feasible schedule σ with the minimal (makespan/period) ‖σ‖ is called optimal. The
following lemma holds because any feasible schedule is sequential on both, machines and
jobs:

Lemma 1 If σ is feasible then ‖σ‖ ≥ ‖M‖ and ‖σ‖ ≥ ‖J ‖. Hence, σ is optimal if
‖σ‖ = max{‖M‖, ‖J ‖}.

For a positive number x, the x-shifting of a schedule σ is a schedule σx, such that
σx = {(J,M, t) | (J,M, t − x) ∈ σ}. For a negative x, σx is defined similarly with the
additional condition that the starting time of an earliest scheduled job in σ is to be no
less than |x|.

We will say that a schedule σ′ is obtained from another schedule σ by inserting job J∗
on machine M0 into the time interval [p, q) if for any J and M :
1) σ(J,M) = σ′(J,M) if M 6= M0;
2) (J,M0, t) ∈ σ iff (J,M0, t) ∈ σ′, for any t < p;
3) (J,M0, t− (q − p)) ∈ σ iff (J,M0, t) ∈ σ′, for any t ≥ q;
4) σ′(M0, t) = J∗, for any t ∈ [p, q).

3 Machine Dependency Graph

Recall that a (machine) dependency graph G represents machine dependencies (nodes
representing the machines and edges representing the jobs shared by the corresponding
couple of machines). For an instance of the job-shop scheduling problem J ,M, there is
an edge (Ml,Mk) in this graph labelled by job J j , iff J j

l → J j
k . The J-component of G,

G[J] is its subgraph formed by the union of all edges of G, labelled by job J . It is easily
seen that each J-component forms an acyclic path without any branching in G and that
only non-elementary jobs from J are presented in G (i.e. associated with an edge of G).

A shop scheduling problem is said to be acyclic if the dependency graph of its any
instance is acyclic. We will see now that operation order does not influence on the acyclicity
of G. More precisely, if the dependency graph of some instance of job-shop is acyclic
then the dependency graph of any other instance of job-shop obtained from the former
instance by changing arbitrarily the operation order in all jobs is also acyclic. Equivalently,
any job-shop instance, obtained from some acyclic open-shop instance by imposing some
operation order in each job is acyclic, and vice-versa. Using this fact, we can define
the machine dependency graph for an open-shop instance as that of any corresponding
job-shop instance.

Observation 1 All elementary extensions of any shop instance have the same dependency

4

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp323-331)

graph.

A shop instance is said to be finitely (periodically or continuously, respectively) solv-
able if there is a polynomial-time algorithm which constructs an optimal finite (optimal
periodic or continuous, respectively) schedule for all elementary extensions of this shop
instance. Likewise, a shop instance is said to be finitely (periodically or continuously, re-
spectively) unsolvable if the problem of constructing of an optimal finite (optimal periodic
or continuous, respectively) schedule for any its elementary extension is NP-hard. A de-
pendency graph is said to be finitely (periodically or continuously, respectively) solvable if
there is a polynomial time algorithm, which for every shop instance with this dependency
graph constructs an optimal finite (optimal periodic or continuous, respectively) schedule.
Later on, we will use solvable (unsolvable) for finitely solvable (finitely unsolvable).

Observation 2 If a shop instance has a finitely (periodically or continuously, respectively)
solvable dependency graph then it is finitely (periodically or continuously, respectively)
solvable.

Note that the converted statement is not true: the solvability of a particular shop
instance depends on job data such as operation lengths which are irrelevant in the de-
pendency graphs. We shall apply the following decomposition of an acyclic dependency
graph G. We find any marginal component in G = G0, G[J0] and form the subgraph
G1 of G0 by deleting all edges and nodes from the G[J0] component in G0, except the
common node of G[J] in G0. We proceed with G1 applying the same procedure: we find a
marginal component G[J1] of G1 and form the next graph G2 similarly. We continue until
an empty graph Gk is obtained. Note that during this decomposition, former common
nodes become non-common in the consequently obtained subgraphs and they are deleted.
We call the sequence G0, G1, ..., Gk a collapsing of G and the corresponding sequence of
jobs J0, . . . , Jk−1 a collapsing sequence of jobs. The brutal estimation on the time needed
for the construction of a collapsing is O(m2), but this can be done in time O(m) (see
Shchepin & Vakhania [9]).

4 Scheduling Periodic job-shop and preemptive open-shop

Let us call a simple cycle in a dependency graph parti-colored if all its edges have different
labels. Any non-elementary job may contribute with at most one edge in the cycle: while
some two operations of a non-elementary job may correspond to two distinct machines
from the cycle, any other operation of that job is to be scheduled on a machine which is
not from the cycle. We call a job-shop problem which machine dependency graph may
contain only simple parti-colored cycles a parti-cyclic job-shop. We abbreviate the periodic
parti-cyclic job-shop problem as J, periodic/parti− cyclic/Cmax.

An extension J ′,M′ of J ,M is said to be its simple extension with job I if:
1. J ′ = J ∪ {I};
2. there is no operation on any machine of M′ \M of any job from J ;
3. job I has one operation on each machine of M′ \M and it has one operation on exactly
one machine of M. The following lemma will be iteratively applied in our basic algorithm.

Lemma 2 Let σ be a continuous finite schedule for job-shop J ,M. Then there is an
O(m) algorithm which constructs a continuous finite schedule σI for the simple extension
J ′,M′ of J ,M with job I.

For an enumeration of jobs J1, J2, . . . Jk, k ≤ n of J , let us define the corresponding
sequence of machine subsets M1,M2, . . . ,Mk, as follows: M1 consists of all machines

5

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp323-331)

with an operation of job J1; each Mi is Mi−1 completed with all machines of M\Mi−1

with an operation of job J i. Clearly, for any given enumeration of jobs there is a unique
corresponding sequence of machine subsets and this sequence can be obtained in time
O(nm). We can prove the following result using the collapsing sequence of jobs of G:

Lemma 3 A continuous finite schedule σ for an instance of acyclic job shop J ,M can
be constructed in time O(nm).

The following result can be proved by applying the periodic extension of σ:

Lemma 4 From a finite continuous schedule σ, a periodic continuous schedule σP for
job-shop J ,M with the optimal period T = max{‖J ‖, ‖M‖} can be obtained in time
O(nm).

Now we already have an O(nm) algorithm for the acyclic periodic job-shop
J, periodic/acyclic/Cmax. Indeed, we construct a finite continuous schedule σ for all non-
elementary jobs of our job-shop by Lemma 3. Then we insert all elementary jobs and
obtain another continuous schedule. Finally, we periodically extend the latter continuous
schedule by Lemma 4:

Theorem 1 There is an O(nm) algorithm for J, periodic/acyclic/Cmax.

Next, we extend this result for the periodic parti-cyclic job-shop using the following
lemmas:

Lemma 5 A dependency graph G is continuously solvable in linear-time if it is a simple
parti-colored cycle.

Lemma 6 Let G be a dependency graph, partitioned into subgraphs G1 and G2 with a sin-
gle connecting edge E. Then G is continuously solvable if both, G1 and G2 are continuously
solvable.

Theorem 2 There is an O(nm) algorithm for J, periodic/parti− cyclic/Cmax.

We have earlier mentioned that O/acyclic, pmtn(m− 3)/Cmax is NP-hard. We will see
now that the version of the same problem with 1 less preemption, O/acyclic, pmtn(m −
2)/Cmax can be efficiently solved.

Theorem 3 O/acyclic, pmtn(m− 2)/Cmax can be solved in time O(nm).

Proof. First we generate a job-shop instance, corresponding to our open-shop instance by
imposing any operation order in each job. Applying Theorem 1, we construct a periodic
schedule σP with the optimal period ‖σP ‖ = max{‖J ‖, ‖M‖} for this job-shop instance.
σP is a periodic extension of a continuous finite schedule. Hence, each non-elementary job
J j is continuous in σP . Consider a switching point τ in σP , such that J j

i completes at
time τ on machine Mi and its immediate successor-operation J j

k starts at the same time
on machine Mk. τ is a switching point on both machines Mi and Mk.

To obtain our destiny schedule σ, we rotate a finite segment of σP . In particular, let
σ be the (−τ)-shifting of the finite schedule σP ⋂J ×M × [τ, τ + ‖σP ‖). Since τ is a
switching point for machines Mi and Mk in σP , there will be no preemption on these
machines in σ. (There will occur a preemption on machine M in σ if τ is not a switching
point for the job, which operation is processed in σP by machine M at moment τ : the
part of this operation scheduled after time τ in σP will be scheduled the first from time
0 on M and the other part will be scheduled the last on M and will be completed right
at the moment ‖σ‖ in σ.) Hence, σ will have at most m − 2 preemptions and since the
makespan of σ is T , it is optimal (Lemma 1).♦

6

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp323-331)

5 NP-hardness of simple acyclic shop problems

First we show that trivial extensions of J, periodic/parti− cyclic/Cmax become NP-hard.
Recall that in the parti-cyclic job-shop we can have no job with three or more operations
on any cycle in the dependency graph G. We shall prove that if we have two jobs with
three operations on a cycle in G, then even periodic flow-shop with only two possible
operation lengths 1 or 2 is periodically unsolvable:

Theorem 4 Let FS(3) be a flow-shop instance with three machines M1,M2 and M3, and
two jobs J1 and J2. p1

1 = p2
1 = 2, while other operations of J1 and J2 have the length

1 (there is no dummy operation in J1 or in J2). The processing order of each job is
M1,M2,M3. FS(3) is periodically unsolvable.

Proof. We use the reduction from PARTITION. Let X = {x1, x2, . . . , xk} be an instance
of PARTITION with S =

∑k
i=1 xi. We define an elementary extension FS(3, X) of FS(3)

as follows: we add k partition jobs J3, . . . , Jk+2 on machine M2 with pi+2
2 = 2xi/S (with

the total length of 2). We show that the problem of construction of a feasible periodic
schedule with the optimal period 4 for FS(3, X) is equivalent to the construction of a
partition for X.

Suppose first that
∑l

i=1 xi = S/2 is a partition of X (for the notation simplicity, we
renumber the partition elements respectively). Then we define a periodic schedule σ with
the period 4 by specifying the processing intervals of all jobs as follows:
σ(J1,M1) = [0, 2) and σ(J2,M1) = [2, 4);
σ(J1,M2) = [2, 3) and σ(J2,M2) = [4, 5);
σ(J1,M3) = [3, 4) and σ(J2,M3) = [5, 6);
The first l partition jobs are continuously scheduled from moment 3 on M2, they exactly
fill in the interval [3, 4); other partition jobs are continuously scheduled from moment
5 and exactly fill in the interval [5, 6); all jobs are then scheduled periodically with the
period 4. The constructed schedule with the period 4 is optimal since 4 is the load time
of M1 (Lemma 1).

In the other way, suppose we have a feasible schedule σ for FS(3, X) with the period 4
and t is the completion time of J1

1 on M1. Note that σ has to be continuous on J1 and
J2 because the length of these jobs is 4. Besides, σ has to be continuous on M1 because
its load time is also 4. It follows that t must be the starting time of J1

2 on M2 and at
the same time it must be the starting time of J2

1 on M1. Then the completion time of J2
1

on M1 is t + 2, which is also the starting time of J2
2 . The schedule has to be continuous

on M2 as well because its load time is 4. Hence, in the interval [t + 1, t + 2) between
second operations of J1 and J2 must be continuously scheduled partition jobs to fill in
completely this interval of length 1. This gives a solution to the PARTITION and the
lemma is proved.♦
Lemma 7 There is an unsolvable flow-shop instance with a single job J0 with 3 opera-
tions.

Proof. We use the reduction from KNAPSACK. Let X = {x1, . . . , xk} and C ≤ ∑
i xi

be an arbitrary instance of KNAPSACK. In our scheduling instance we have 3 machines
M1,M2 and M2 and all jobs have to be processed in this order. Job J0 is such that p0

1 = C
and p0

1+p0
3 =

∑
i xi. We consider the following elementary extension with k+2 jobs of this

flow-shop instance. Job J1 is added to M1 with p1
1 = p0

2 + p0
3; job J2 is added to M3 with

p2
3 = p0

1 + p0
2; finally, k jobs J3, . . . , Jk+2 with pi

2 = xi, i = 3, ..., k + 2 are added to M2.
The rest of operations of all jobs are dummy. It is clear that the problem of constructing
of a feasible schedule with the optimal makespan p0

1 + p0
2 + p0

3 is equivalent to finding a
subset X ′ of X with

∑
i∈X′

xi = C.♦

7

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp323-331)

Given a schedule σ, let us denote by [σ] the schedule, which components are defined as
{(M, J, [[p], [q])}, for each component (M, J, [p, q)) of σ ([x] is the integral part of x).

Lemma 8 Any subgraph G′ of a solvable dependency graph G is also solvable.

Proof. Let J ′,M′ and J ,M be job-shop instances with dependency graphs G′ and G,
respectively. Since operation lengths are irrelevant in dependency graphs, without loss of
generality, we can assume that the operation lengths in J ′ are integers and that the total
length of all operations from J \ J ′ is strictly less than 1.

Let σ be an optimal schedule for J ,M. Then obviously, [σ] is a feasible schedule for
J ′,M′ with ||[σ]|| ≤ ||σ||. We claim that [σ] is also optimal. Assume that σ′ is an optimal
schedule for J ′,M′ with ||σ′|| < ‖[σ]‖. Since all operation lengths in σ′ are integers and
||[σ]|| ≤ ||σ||, ‖σ′‖ + 1 ≤ ‖σ‖. We will come to a contradiction by extending σ′ to a
feasible schedule for J ,M with the makespan, less than σ. This schedule is constructed
step-by-step, at each step a single job from J \J ′ is inserted; we denote by σi the schedule
obtained after the ith insertion, σ0 = σ′. Suppose J j

i is an operation of job J j ∈ J \ J ′
inserted at step i in σi−1. Let t be the completion time of the latest predecessor-operation
of J j

i already scheduled in σi−1 (t = 0 if there is no such operation). σi is obtained
from σi−1 by inserting J j

i at time t and shifting all operations, scheduled after t in σi−1

by pj
i . It is easily seen that σk, k = |J \ J ′| is a feasible schedule for J ,M. Besides,

‖σk‖ < ‖σ′‖ + 1, as the overall shifting in σk does not exceed the summary length of all
operations in J \ J ′ which is strictly less than 1. But since ‖σ′‖+ 1 ≤ ‖σ‖, ‖σk‖ < ‖σ‖
and we came to a contradiction.♦

The next result immediately follows from Lemmas 7 and 8:

Theorem 5 Any flow-shop problem with at least 1 job with at least 3 operations is (fi-
nitely) unsolvable.

We complete this section by giving a flow-shop instance with 7 jobs which is finitely
unsolvable with respect to the extensions with short jobs (an analogous example with
short operations can be similarly constructed and proved):

Theorem 6 Consider the following flow-shop instance FS(7) with three machines M1,M2

and M3 and seven jobs J i, i = 1, 2, . . . , 7. The processing order of each job coincides with
the machine numbering and all operations of all these jobs have length 1. The problem
of construction of an optimal finite schedule for any elementary extension of FS(7) with
short jobs is NP-hard.

6 Further research

We believe that approximation algorithms for J//Cmax can be built with their worst-case
performance depending on the total number of cycles in the machine dependency graphs.
A further investigation of the solvability conditions is of the interest. For example, can
there be found sufficient and necessary conditions for (periodic and finite) solvability of
dependency graphs in job-shop?

References

[1] Gonzalez T. and S. Sahni, ”Open Shop Scheduling to Minimize Finish time”, Journal
of the ACM 23, 665-679 (1976)

8

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp323-331)

[2] Gonzalez T. and S. Sahni, ”Flow-Shop and Job-Shop schedules: complexity and ap-
proximations”, Oper. Research 26, 36-52 (1978)

[3] Hall N.G., T.E. Lee and M.E. Posner, ”The complexity of cyclic shop scheduling
problems”, Journal of Schedulung 5, 307-327 (2002)

[4] Hefetz N. and I. Adiri. An efficient optimal algorithm for two-machines unit-time job-
shop schedule-length problem. Math. Oper. Res., 7, 354-360 (1982)

[5] Jackson J. R., ”Scheduling a production line to minimize maximum tardiness”, Re-
search Report 43, Management Science Research Project, University of California, Los
Angeles (1955)

[6] Lenstra J.K., Shmoys D. B. and Tardos E. ”Approximation algorithms for scheduling
unrelated parallel machines” Mathematical Programming, 46, 259-271 (1990)

[7] Lenstra J.K., Rinnooy Kan A. H. G., and Brucker P. “Algorithms for scheduling un-
related parallel machines” Ann. Discr. Math., 1, 343-362 (1977)

[8] Shchepin E. and Vakhania N., “Task distributions on multiprocessor systems”, In:
Lecture Notes in Computer Science (IFIP TCS) 1872, p.112-125, Springer, New York
(2000)

[9] Shchepin E. and N. Vakhania, ”Little-preemptive scheduling on unrelated processors”,
Journal of Mathematical Modelling and Algorithms 1, 43-56 (2002)

[10] Shchepin E. and N. Vakhania. “An optimal rounding gives a better approximation
for scheduling unrelated machines”. Operations Research Letters 33, p.127-133 (2005)

[11] Shchepin E. and N. Vakhania. “New tight NP-hardness of preemptive multiprocessor
and open-shop scheduling”. Proceedings of 2nd Multidisciplinary International Con-
ference on Scheduling: Theory and Applications MISTA 2005, p. 606-629 (2005)

9

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp323-331)

