

An Improved Version of Backpropagation Algorithm
with Effective Dynamic Learning Rate and Momentum

MAMMADAGHA MAMMADOV

Statistics, Faculty of Science
T.C. Anadolu University

26470 Eskisehir
TURKEY

m

ENGIN TAS
Statistics, Faculty of Science and Literature

Afyon Kocatepe University
03200 Afyon

TURKEY

Abstract: - An improvement of backpropagation algorithm with momentum is introduced. Local quadratic
approximation of the error function is performed at every stage of the learning process and the Hessian matrix of the
quadratic error function is approximated [1]. Efficient learning rate and momentum factor is determined at every stage
of the learning process by means of maximum and minimum eigenvalues of the Hessian matrix. The effective
performance of this new approach is demonstrated on three examples.

Key-Words: - Multilayer neural networks; Backpropagation algorithm with momentum; Optimization; Momentum;
Supervised learning; Local quadratic approximation

1 Introduction
Learning algorithms in multi layer feed forward neural
networks based on the minimization problem of the
error function [2, 3]. Backpropagation (BP) algorithm
which becomes popular by the work [4], takes its
origin from the gradient descent method in numeric
optimization. Afterwards, using different class of
numerical optimization methods, various first and
second order algorithms have been developed for
training of neural networks [2, 3]. One simple and
important modification of BP algorithm is to add
momentum term to the gradient descent formula [5].
This effectively adds inertia to the motion through
weight space and smoothes out the oscillations [3].
The inclusion of momentum generally leads to a
significant improvement in the performance of
gradient descent and introduce a second parameter µ
whose value needs to be chosen, in addition to that of
the learning rate parameter η . One obvious problem is
to choose learning rate η and momentum factor µ
efficiently and automatically in BP with momentum
(BPM) algorithm.
There have been numerous studies on the stability and
the convergence speed of the BPM algorithm [12-19].
(e.g. Jacobs 1988; Fahlman 1989; Silva and Almeida
1990; Le Cun et al. 1993; Hagiwaro and Sato 1995,
Kamarathi and Pittner 1999, Phlansalkar and Sastry
1994, Yu and Chen 1997).
Qian, 1999 demonstrates an analogy between the
convergence of the momentum algorithm and the
movement of Newtonian particles in a viscous
medium. By utilizing a discrete quadratic
approximation to this continuous system, Qian also

derives the conditions for stability of the algorithm for
a quadratic function. Torii and Hagan (2002) analysis
the effect of momentum on the stability and speed of
convergence of the steepest descent algorithm applied
to quadratic functions. Amit Bhaya (2004) establishes
various connections between the CG algorithm and the
BPM acceleration for a quadratic error function.
A modified BPM algorithm is proposed based on the
results obtained in section 2. Main principle in here is
to apply efficient learning rate and momentum factor
using local approximation of the error function and
fitting Hessian at every occurring weight point.

2 Stability and Convergence Speed of
the BPM Algorithm for Quadratic
Error Functions
Consider the gradient descent with momentum
algorithm

1 1(1) () (1)t t t t tx x Hx x x bµ η µ µ η+ −− = − − + − + − (1)

for the minimization of the following quadratic error
function

1()
2

T TE x x Hx b x c= − + (2)

where µ is the momentum factor, η is the learning
rate, H is an n n× symmetric positive definite
matrix, b is an n -dimensional vector and c is a
given constant. Gradient of the quadratic function E

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp356-361)

at point x is ()E x Hx b∇ = − .
Applying the orthogonal transformation Tx Q x′ = (Q
is a matrix which is formed by orthonormal
eigenvectors of H), (2) can be rewritten in
coordinates as [6, 7]

, 1 , , 1[1 (1)] (1) , 1,i t i i t i t ix x x b i nµ µηκ µ µη+ −′ ′ ′ ′= + − − − + − = (3)

where ik , 1,i n= the eigenvalues of symmetric and
positive definite matrix H . Then the coordinates of
vector x are obtained by the linear combination of the
coordinates of x′ . Including the dummy equation

, ,i t i tx x′ ′= , we can write (3) in matrix form:

, 1
, 1 , ,

,

, i t
i t i i t i i t

i t

x
x Px d x

x
−

+

′⎛ ⎞
′ ′ ′= + = ⎜ ⎟⎜ ⎟′⎝ ⎠

% % % , 1,2,...,i n= (4)

where
0 1

1 (1)i
i

P
µ µ µ ηκ

⎛ ⎞
= ⎜ ⎟− + − −⎝ ⎠

 is a 2 2×

matrix,
0
(1)i

i

d
bµ η

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 is a two-dimensional vector

(1, 2,...,i n=). The linear dynamic system given by
(3) or (4) is stable if the magnitudes of eigenvalues of

iP matrix is smaller than one [8]. Thus a relation is set
upped between the stability problem of
backpropagation with momentum (BPM) algorithm (1)
and the magnitudes of eigenvalues of iP matrix.
We can write the corresponding characteristic equation
for finding the eigenvalues of iP (1, 2,...,i n=)
matrix:

1
0,

1 (1)
1, 2,...,

i
i

P I

i n

λ
λ

µ µ µ κ λ
−

− = =
− + − − −

=

,.

Thus we have that the λ eigenvalues of iP matrix are
the roots of the following quadratic equations [6, 9]:

2 [(1) (1)] 0, 1,2,...,i i nλ µ µ ηκ λ µ− + − − + = = (5)

Therefore the stability problem of (1) gradient descent
algorithm becomes the examination of (5). Roots of
(5) correspond to any κ eigenvalue of H matrix, can
be calculated as

2
4])1()1[(])1()1[(2 µηκµµηκµµ

λ
−−−+±−−+

= (6)

Let us take the quadratic function on the left-hand side
of (5) (with respect to λ):

2() [(1) (1)]ϕ λ λ µ µ ηκ λ µ= − + − − + (7)

Discriminant of this quadratic form

µηκµµ 4])1()1[(2 −−−+=D , or if we write
according to the degrees of momentum factor µ then

2 2 2 2 2() (1) 2(1) (1)D µ ηκ µ η κ µ ηκ= + − + + − (8)

In the case of 0D < , the roots of (5) are conjugate
complex numbers and their magnitudes are constants
that equal to λ µ= . The sign of function ()D µ is
determined as [7]

0 , () 1
() 0 , 1 ()

0 , 1 ()

S
D veya S

veya S

ηκ µ
µ µ µ ηκ

µ µ ηκ

< < <⎧
⎪= = =⎨
⎪> > <⎩

 (9)

where
2

2

(1)()
(1)

S ηκηκ
ηκ

−
=

+
. For a given matrix H

()S ηκ is a function of η variable. ()S ηκ as a
function of ηκ have the following properties: ()S ηκ
decreases from 1 to 0 in the interval 0 1ηκ≤ ≤ and
takes the minimum value 0 at 1ηκ = . This function
increases if 1ηκ > . ()S ηκ is convex in 0 2ηκ≤ ≤ ,
and concave in (2,)+∞ . 2ηκ = is the turning point
(see fig. 1).
Teorem [7] Assume that η is the learning rate and

, 1, 2,...,i i nκ = are the eigenvalues of the
symmetric positive definite H matrix. If 0 2iηκ< ≤ ,

1, 2,...,i n= then the BPM algorithm (1) is stable for
any momentum factor µ in the range (0,1) else if
max 2ii

ηκ > then (1) is stable for any momentum

factor µ in the range
2max 1
2

i

i
i

ηκ µ
ηκ

−
< <

+
 (Proof of

the theorem is not given here).
In fig. 1, for the stability of (2) iterative process,
variation interval of µ with respect to ηκ
 is demonstrated geometrically.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp356-361)

Figure I.

Note 1. From the proof of the theorem [7] it can be
seen that the following statements are true:
If 0 1ηκ< < and () 0D µ > then the appropriate
roots of (5) settle in (0,1).
If 1 2ηκ< ≤ and () 0D µ > then the appropriate
roots of (5) settle in (-1,0).
If 2ηκ > and () 0D µ > then the appropriate roots of
(5) settle in (-1,0).
Note 2. The theorem given above can be expressed in
short:
Assume that η is the learning rate and

, 1, 2,...,i i nκ = are the eigenvalues of the symmetric
positive definite matrix H , then the BP with
momentum algorithm given by (1) is stable for the
momentum factors in the range

2max{0 , max } 1
2

i

i
i

ηκ µ
ηκ

−
< <

+

Note 3. From the proof of the theorem, it can be seen
that: While the momentum factor µ changes in

1 1µ− < < ,
2max 1
2

i

i
i

ηκ µ
ηκ

−
< <

+
 is the necessary

and the sufficient condition for algorithm (1) to be
stable.
As explained in [9] the convergence speed of the
algorithm depends on the magnitudes of λ
eigenvalues – the smaller the magnitude the faster the
convergence – when λ eigenvalues are complex. This
shows that for a given learning rate, the choice

2

2

(1)max max ()
(1)

i
ii i

i

S kηκµ η
ηκ

−
= =

+
 provides a better

convergence in general. In fact, a better choice of
learning rate η should shrink the magnitudes of λ
eigenvalues more. We propose to determine 0η η=

from the following minimax problem:

0 2 2

0 2 20

(1) (1)max min max
(1) (1)

i i

i i
i i

η

η κ ηκ
η κ ηκ<

− −
=

+ +

Assume that the eigenvalues of the symmetric positive
definite H matrix are ordered in this way:

1 2 10 ...n nk k k k−< ≤ ≤ ≤ ≤ ,

where nk is the smallest and 1k is the largest
eigenvalue. In this case, the plots of

2

2

(1)()
(1)

i
i

i

S ηκη
ηκ

−
=

+
, 1, 2,...,i n= function

comparisons of η are illustrated in fig. 2.
As can be seen from fig. 2, the function

2

2

(1)() max () max
(1)

i
ii i

i

S S ηκη η
ηκ

−
= =

+
% can be defined

as

Figure II.

1,

1 1,

() , 0
()

() ,
n n

n

S
S

S
η η η

η
η η η

≤ ≤⎧⎪= ⎨ ≥⎪⎩
% , or

2

1,2

2
1

1,2
1

(1) , 0
(1)

()
(1) ,
(1)

n
n

n

n

k
k

S
k
k

η η η
η

η
η η η
η

⎧ −
≤ ≤⎪ +⎪= ⎨

−⎪ ≥⎪ +⎩

%

In this case, it is easy to see that the solution point of

the problem min ()S
η

η% is 0

1

1

nk k
η = . Thus, a good

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp356-361)

convergence speed is achieved by taking the learning
rate and the momentum factor as

0

1

1

nk k
η η= = (10)

0 0()Sµ µ η= = %

2

1

2

1

1

1

n

n

k
k

k
k

⎛ ⎞
−⎜ ⎟

⎝ ⎠=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 (11)

For faster convergence of the gradient descent with
momentum algorithm, (10) and (11) formulas are
proposed for determining the learning rate and
momentum factor respectively. Results obtained from
the experiments support this proposal.

3. MODIFIED BPM (MBPM)
Consider the gradient descent with momentum
algorithm for BPM. Assume that nx R∈ is the weight
vector and ()E x is the error function representing the
total squared errors for the whole input pattern set.
Since sigmoid shaped activation functions are used in
hidden layers, the error function ()E x is generally
nonlinear. Backpropagation is a gradient descent
algorithm for finding the minimum of the error
function ()E x ; hence it can be written as the
following:

1 1(1) () ()t t x t t tx x E x x xµ η µ+ −− = − − ∇ + −

Keeping the above idea as the basis, we propose to
modify BPM algorithm so as to work with dynamic
dynamic efficient values of learning rate and
momentum factor. To achieve this, at every step of the
algorithm, we consider the right hand side of (BPM) as
a search direction for the minimum of the local
quadratic approximation of the error function ()E x . If
point the search direction with tdx at step t , we have

1(1) () ()t t x t t t tdx E x x xµ η µ −= − − ∇ + − , (12)

where tη is the dynamic learning rate and tµ is the
dynamic momentum factor at step t which is
determined by (10) and (11) respectively. In order to
obtain these values, we have to compute Hessian
matrix at every step. Since this computation is
expensive, instead of using exact Hessian we can use
an approximation which is given as [1]

1
1 1()

T T

t t T T
t t t

pp vvH H
p dx v x x−

− −

= + +
−

, (13)

where 1()x tp E x −= ∇ , 1() ()x t x tv E x E x −= ∇ −∇ and

1tdx − is the previous search direction. And
weight vector x is updated according to the following

1t t t tx x dxα+ = + , (14)
where tα is found by the line search to minimize

1 1() ()t tE E x dxα α− −= + .

Modified BPM can now be described as follows.

1. Choose initial weight vector 0x .
2. If first iteration,

calculate 0()E x and 0()xE x∇ ,
set initial search direction to negative gradient,

0 0()xdx E x= −∇ ,
set initial Hessian to the unit matrix, H I= .

3. After first iteration,
calculate change in gradient,

1() ()x t x tv E x E x −=∇ −∇
calculate new Hessian approximation by (13)
calculate ,η µ using (10), (11) respectively,
set the new search direction tdx by (12)

4. Check the search direction whether it is a descent
direction or not.
If it is not a descent direction

set Hessian to the unit matrix, H I= ,
set search direction to negative gradient

end if
5. Update the weights by (14)
6. Check for the stopping criteria. Repeat steps 3-6.

4. Simulation Results
In this section the convergence behaviour of the
proposed BP training algorithm with efficient learning
rate and momentum (MBPM) is compared with well-
known BP training algorithms such as gradient descent
(GD), gradient descent with adaptive learning rate
(GDA), gradient descent with momentum (GDM),
gradient descent with adaptive learning rate and
momentum (GDX), scaled conjugate gradient (SCG)
and a quasi Newton based method (BFG). Detailed
explorations of these algorithms can be found in neural

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp356-361)

 Table I. Simulation Results.

networks literature.Learning rate parameter is chosen
as 0.01 for GD and the momentum parameter is chosen
as 0.9 for GDM and GDX. Initial values of the weights
are calculated by Nguyen-Widrow initialization
method as in Matlab toolbox. Once the initial weights
are determined then all algorithms use these initial
weights as startup weights. Therefore all algorithms
take the same initial weights at the startup of each
learning process. For all tests reported, a tangent
sigmoid transfer function was used for hidden nodes
and a linear transfer function for the output nodes of a
fully connected feed forward neural network. The
learning processes terminate when the iterations are
over a fixed number of epochs or the mean squared
error (MSE) is less than a small threshold.
Epoch numbers, mean squared errors (MSE) and
running times are considered in evaluating the
convergence performance of the algorithms. All codes
for the simulations were written with Matlab and
performed on an IBM Thinkpad / Centrino 1.5 Ghz
mobile.
XOR problem. The first test was performed with the
exclusive-or (XOR) problem, which is the most
popular benchmark for neural network training. The
network architecture used for this problem consisted of
two inputs, one hidden layer with three units and one
output unit. The network mapped each of the four pairs
of input patterns into the corresponding output target
value.
Two spirals problem. For the second training task we
selected the “two spirals separation problem”
examined in [10] The difficulty of this problem has

been demonstrated in many attempts to solve the
problem with backpropagation and several elaborated
modifications. The input pattern set consists of the
pairs of coordinates describing the points of two
intertwined spirals in the x y− -plane. The network is
trained to discriminate points lying on these two
separate spirals. The membership of an input point to
one or the other spiral was indicated by the target
values 0 and 1,
respectively. Since the BP algorithm is unable to locate
more than suboptimal solutions of the two spirals
problem for networks with one hidden layer [11], a
network with two hidden layers was used. The network
was built up of an input layer of two units, each one
representing a coordinate, a first hidden layer with ten
units, a second hidden layer with two units and an
output layer with one unit.
L-T problem. The third experiment conducted a simple
L-T letter recognition task. The network had nine input
units, two hidden units and a single output unit, and
was trained to recognize the letters L and T. Each input
pattern was a 3 3× pixel binary image of a letter. The
training set was formed by eight patterns, all four
orientations for
each letter. The letters L and T were indicated by the
target values 0.05 and 0.95, respectively, for
the output unit.

5. Conclusion
In this paper, we focused on improving the standard
BPM algorithm for training feedforward neural

 BFG MBPM SCG GDX GDM GDA GD

XOR Epochs 16 30 15 420 1960 173 1966

 MSE 2.48E-06 5.41E-06 4.09E-06 0.016136 0.032367 7.47E-06 0.03237

 Time 0.20287 0.31594 0.17574 2.0475 8.8521 0.85706 8.4043

Two Spirals Epochs 506 3580 3324 10000 10000 10000 10000

 MSE 0.22656 0.0076954 0.0044271 0.048915 0.52471 0.07582 0.52518

 Time 8.2365 60.836 42.038 72.212 73.627 79.026 71.244

L-T Epochs 25 57 41 500 8929 1136 8858

 MSE 7.49E-06 8.53E-06 8.30E-06 9.63E-06 9.15E-05 9.83E-06 9.17E-05

 Time 0.24168 0.52452 0.33071 2 40 4.5788 38

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp356-361)

networks. Local quadratic approximation of the error
function allows us to determine optimum parameters
for learning. We propose a new speed-up algorithm
called MBPM based on the concept of using efficient
learning rate and momentum factor at every stage.
MBPM does not contain any user-dependent
parameters whose values are crucial for the success of
MBPM. Experimental results (table I) with the MBPM
algorithm show that this algorithm offers much higher
speed of convergence than the variants of conventional
BP algorithm (GD,GDA,GDM,GDX). Consequently,
the improvement presented can be considered as a
valuable and viable alternative to existing methods. On
the other hand, when compared with second-order
methods such as BFG and SCG, MBPM shows
considerable performance.

References:
[1] Gill, P. E., W. Murray, and M. H. Wright,

Practical Optimization, New York: Academic
Press, 1981.

[2] Haykin S., Neural Networks (2nd ed.). Upper
Saddle River. NJ:Prentice-Hall, 1999.

[3] Bishop C. M., Neural networks for pattern
recognition. Oxford Univ. Press, 1995.

[4] Rumelhart D. E., Hinton G. E., and Williams R. J.,
Learning representations by back-propagating
errors, Nature, vol. 323, pp. 533-536, 1986.

[5] Plaut, D.; Nowlan, S. ve Hinton, G.E. Experiments
on learning by backpropagation. Technical Report
CMU-CS-86-126, Department of Computer
Science, Carnegie Mellon University, Pittsburgh,
PA, 1986.

[6] Qian N., On the momentum term in gradient
descent learning algorithms, Neural Networks,
vol. 12, pp. 145-151, 1999.

[7] Mammadov M., Tas E., Stability and Convergence
Speed of Gradient Descent With Momentum
Training Algorithm, IV. Statistics Congress,
Antalya, May 2005.

[8] Brogan W. L., Modern Control Theory. Englewood
Cliffs, NJ: Prentice-Hall, 1991.

[9] Torii M. and Hagan M. T., Stability of steepest
descent with momentum for quadratic functions,

IEEE Transactions on Neural Networks, vol. 13,
pp.752-756, 2002.

[10] Lang, K. J., Witbrock, M. J., Learning to tell two
spirals apart., Proceedings of the 1988
Connectionist Models Summer School, (pp. 52-
59). Pittsburgh, PA: Morgan Kaufmann, 1989.

[11] Baum, E. B., Lang, K. J., Constructing hidden
units using examples and queries. In R. P.
Lippmann & J. E. Moody & D. S. Touretzky
(Eds.), (pp. 904-910). Advances in neural
information processing systems, 3. San Mateo,
CA: Morgan Kaufmann. 1991.

[12] Jacobs, R. A. An adaptive least square algorithm
for the efficient training of artificial neural
networks. IEEE Transactions on Circuits and
Systems. 36, 1092-1101. 1988.

[13] Fahlman, S.E. Faster-learning variations on
back-propagation: an empirical study.
Proceedings of the 1988 Connectionist Models
Summer School, (pp. 38-51). Pittsburgh, PA:
Morgan Kaufmann. 1989.

[14] Silva, F. M., Almeida, L. B. In L. B. Almeida &
C. J. Wellekens (Eds.), Accelaration techniques
for the backpropagation algorithm, (pp. 110-119).
Lecture Notes in Computer Science, 412. Berlin:
Springer.

[15] LeCun, Y., Denker, J.S., Solla, S.A. Optimal
Brain Damage. In D.S. Touretzky (Ed.), Advances
in neural information processing systems 2
(NIPS*89) (pp. 598-605). Denver, CO: Morgan
Kaufman.

[16] Hagiwara M. and Sato A., Analysis of momentum
term in backpropagation, IEICE Trans. Inform.
Syst., vol. E78-D, no. 8. Aug. 1995.

[17] Kamarthi S. V. and Pittner S., Accelerating
neural network training using weight
extrapolations, Neural Networks, vol. 12, pp.
1285-1299, 1999.

[18] Phansalkar V. V., Sastry P.S., Analysis of the
backpropagation algorithm with momentum, IEEE
Trans. Neural Networks, vol. 5, May 1994.

[19] Yu X. H. and Chen G. A., Efficient
backpropagation learning using optimal learning
rate and momentum, Neural Networks, vol. 10, pp.
517-527, 1997.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp356-361)

