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Abstract: - An improvement of backpropagation algorithm with momentum is introduced. Local quadratic 
approximation of the error function is performed at every stage of the learning process and the Hessian matrix of the 
quadratic error function is approximated [1]. Efficient learning rate and momentum factor is determined at every stage 
of the learning process by means of maximum and minimum eigenvalues of the Hessian matrix. The effective 
performance of this new approach is demonstrated on three examples.  
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1   Introduction 
Learning algorithms in multi layer feed forward neural 
networks based on the minimization problem of the 
error function [2, 3]. Backpropagation (BP) algorithm 
which becomes popular by the work [4], takes its 
origin from the gradient descent method in numeric 
optimization. Afterwards, using different class of 
numerical optimization methods, various first and 
second order algorithms have been developed for 
training of neural networks [2, 3]. One simple and 
important modification of BP algorithm is to add 
momentum term to the gradient descent formula [5]. 
This effectively adds inertia to the motion through 
weight space and smoothes out the oscillations [3]. 
The inclusion of momentum generally leads to a 
significant improvement in the performance of 
gradient descent and introduce a second parameter µ  
whose value needs to be chosen, in addition to that of 
the learning rate parameter η . One obvious problem is 
to choose learning rate η  and momentum factor µ  
efficiently and automatically in BP with momentum 
(BPM) algorithm. 
There have been numerous studies on the stability and 
the convergence speed of the BPM algorithm [12-19]. 
(e.g. Jacobs 1988; Fahlman 1989; Silva and Almeida 
1990; Le Cun et al. 1993; Hagiwaro and Sato 1995, 
Kamarathi and Pittner 1999, Phlansalkar and Sastry 
1994, Yu and Chen 1997). 
Qian, 1999 demonstrates an analogy between the 
convergence of the momentum algorithm and the 
movement of Newtonian particles in a viscous 
medium. By utilizing a discrete quadratic 
approximation to this continuous system, Qian also 

derives the conditions for stability of the algorithm for 
a quadratic function. Torii and Hagan (2002) analysis 
the effect of momentum on the stability and speed of 
convergence of the steepest descent algorithm applied 
to quadratic functions. Amit Bhaya (2004) establishes 
various connections between the CG algorithm and the 
BPM acceleration for a quadratic error function.  
A modified BPM algorithm is proposed based on the 
results obtained in section 2. Main principle in here is 
to apply efficient learning rate and momentum factor 
using local approximation of the error function and 
fitting Hessian at every occurring weight point. 
 
 
2    Stability and Convergence Speed of 
the BPM Algorithm for Quadratic 
Error Functions 
Consider the gradient descent with momentum 
algorithm 
 

1 1(1 ) ( ) (1 )t t t t tx x Hx x x bµ η µ µ η+ −− = − − + − + −        (1) 
 
for the minimization of the following quadratic error 
function 
 

1( )
2

T TE x x Hx b x c= − +                                         (2) 

 
where µ  is the momentum factor, η  is the learning 
rate, H  is an n n×  symmetric positive definite 
matrix, b  is an n -dimensional vector and c  is a 
given constant. Gradient of the quadratic function E  
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at point x  is ( )E x Hx b∇ = − .  
Applying the orthogonal transformation Tx Q x′ =  ( Q  
is a matrix which is formed by orthonormal 
eigenvectors of H ), (2) can be rewritten in 
coordinates as [6, 7 ] 
 

, 1 , , 1[1 (1 ) ] (1 ) , 1,i t i i t i t ix x x b i nµ µηκ µ µη+ −′ ′ ′ ′= + − − − + − =   (3) 
 
where ik , 1,i n=  the eigenvalues of symmetric and 
positive definite matrix H . Then the coordinates of 
vector x  are obtained by the linear combination of the 
coordinates of x′ . Including the dummy equation 

, ,i t i tx x′ ′= , we can write (3) in matrix form: 
 

, 1
, 1 , ,

,

, i t
i t i i t i i t

i t

x
x Px d x

x
−

+

′⎛ ⎞
′ ′ ′= + = ⎜ ⎟⎜ ⎟′⎝ ⎠

% % % , 1,2,...,i n=       (4) 

where 
0 1

1 (1 )i
i

P
µ µ µ ηκ

⎛ ⎞
= ⎜ ⎟− + − −⎝ ⎠

 is a 2 2×  

matrix, 
0
(1 )i

i

d
bµ η

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 is a two-dimensional vector 

( 1, 2,...,i n= ). The linear dynamic system given by 
(3) or (4) is stable if the magnitudes of eigenvalues of 

iP  matrix is smaller than one [8]. Thus a relation is set 
upped between the stability problem of 
backpropagation with momentum (BPM) algorithm (1) 
and the magnitudes of eigenvalues of iP  matrix. 
We can write the corresponding characteristic equation 
for finding the eigenvalues of iP  ( 1, 2,...,i n= ) 
matrix: 
 

1
0,

1 (1 )
1, 2,...,

i
i

P I

i n

λ
λ

µ µ µ κ λ
−

− = =
− + − − −

=

,. 

 
Thus we have that the λ  eigenvalues of iP  matrix are 
the roots of the following quadratic equations [6, 9]: 
 

2 [(1 ) (1 ) ] 0, 1,2,...,i i nλ µ µ ηκ λ µ− + − − + = =         (5) 
 
Therefore the stability problem of (1) gradient descent 
algorithm becomes the examination of (5). Roots of 
(5) correspond to any κ  eigenvalue of H  matrix, can 
be calculated as 
 

2
4])1()1[(])1()1[( 2 µηκµµηκµµ

λ
−−−+±−−+

=         (6) 

 
Let us take the quadratic function on the left-hand side 
of (5) (with respect to λ ): 
 

2( ) [(1 ) (1 ) ]ϕ λ λ µ µ ηκ λ µ= − + − − +                  (7) 
 
Discriminant of this quadratic form 

µηκµµ 4])1()1[( 2 −−−+=D , or if we write 
according to the degrees of momentum factor µ  then 
 

2 2 2 2 2( ) (1 ) 2(1 ) (1 )D µ ηκ µ η κ µ ηκ= + − + + −         (8) 
 
In the case of 0D < , the roots of (5) are conjugate 
complex numbers and their magnitudes are constants 
that equal to λ µ= . The sign of function ( )D µ  is 
determined as [7] 

0 , ( ) 1
( ) 0 , 1 ( )

0 , 1 ( )

S
D veya S

veya S

ηκ µ
µ µ µ ηκ

µ µ ηκ

< < <⎧
⎪= = =⎨
⎪> > <⎩

         (9) 

 

where 
2

2

(1 )( )
(1 )

S ηκηκ
ηκ

−
=

+
. For a given matrix H  

( )S ηκ is a function of η  variable. ( )S ηκ  as a 
function of ηκ  have the following properties: ( )S ηκ  
decreases from 1 to 0 in the interval 0 1ηκ≤ ≤  and 
takes the minimum value 0 at 1ηκ = . This function 
increases if 1ηκ > . ( )S ηκ  is convex in 0 2ηκ≤ ≤ , 
and concave in (2, )+∞ . 2ηκ =  is the turning point 
(see fig. 1). 
Teorem [7] Assume that η  is the learning rate and 

, 1, 2,...,i i nκ =  are the eigenvalues of the 
symmetric positive definite H  matrix. If 0 2iηκ< ≤ , 

1, 2,...,i n=  then the BPM algorithm (1) is stable for 
any momentum factor µ  in the range (0,1) else if 
max 2ii

ηκ >  then (1) is stable for any momentum 

factor µ  in the range 
2max 1
2

i

i
i

ηκ µ
ηκ

−
< <

+
 ( Proof of 

the theorem is not given here). 
In fig. 1, for the stability of (2) iterative process, 
variation interval of µ  with respect to ηκ  
 is demonstrated geometrically. 
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Figure I. 
 
Note 1. From the proof  of the theorem [7] it can be 
seen that the following statements are true: 
If 0 1ηκ< <  and ( ) 0D µ >  then the appropriate 
roots of (5) settle in (0,1). 
If 1 2ηκ< ≤  and ( ) 0D µ >  then the appropriate 
roots of (5) settle in (-1,0). 
If 2ηκ >  and ( ) 0D µ >  then the appropriate roots of 
(5) settle in (-1,0). 
Note 2. The theorem given above can be expressed in 
short: 
Assume that η  is the learning rate and 

, 1, 2,...,i i nκ =  are the eigenvalues of the symmetric 
positive definite matrix H , then the BP with 
momentum algorithm given by (1) is stable for the 
momentum factors in the range  

2max{0 , max } 1
2

i

i
i

ηκ µ
ηκ

−
< <

+
 

Note 3. From the proof of the theorem, it can be seen 
that: While the momentum factor µ  changes in 

1 1µ− < < , 
2max 1
2

i

i
i

ηκ µ
ηκ

−
< <

+
 is the necessary 

and the sufficient condition for algorithm (1) to be 
stable. 
As explained in [9] the convergence speed of the 
algorithm depends on the magnitudes of λ  
eigenvalues – the smaller the magnitude the faster the 
convergence – when λ  eigenvalues are complex. This 
shows that for a given learning rate, the choice 

2

2

(1 )max max ( )
(1 )

i
ii i

i

S kηκµ η
ηκ

−
= =

+
 provides a better 

convergence in general. In fact, a better choice of 
learning rate η  should shrink the magnitudes of λ  
eigenvalues more. We propose to determine 0η η=  

from the following minimax problem: 
 

0 2 2

0 2 20

(1 ) (1 )max min max
(1 ) (1 )

i i

i i
i i

η

η κ ηκ
η κ ηκ<

− −
=

+ +
 

 
Assume that the eigenvalues of the symmetric positive 
definite H  matrix are ordered in this way: 
 

1 2 10 ...n nk k k k−< ≤ ≤ ≤ ≤ , 
 
where nk  is the smallest and 1k  is the largest 
eigenvalue. In this case, the plots of 

2

2

(1 )( )
(1 )

i
i

i

S ηκη
ηκ

−
=

+
, 1, 2,...,i n=  function 

comparisons of η  are illustrated in fig. 2.  
As can be seen from fig. 2, the function 

2

2

( 1)( ) max ( ) max
( 1)

i
ii i

i

S S ηκη η
ηκ

−
= =

+
%  can be defined 

as  

 
Figure II. 
 

1,

1 1,

( ) , 0
( )

( ) ,
n n

n

S
S

S
η η η

η
η η η

≤ ≤⎧⎪= ⎨ ≥⎪⎩
% , or 

 
2

1,2

2
1

1,2
1

(1 ) , 0
(1 )

( )
(1 ) ,
(1 )

n
n

n

n

k
k

S
k
k

η η η
η

η
η η η
η

⎧ −
≤ ≤⎪ +⎪= ⎨

−⎪ ≥⎪ +⎩

%  

 
In this case, it is easy to see that the solution point of 

the problem min ( )S
η

η%  is 0

1

1

nk k
η = . Thus, a good 
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convergence speed is achieved by taking the learning 
rate  and the momentum factor as  

0

1

1

nk k
η η= =                                                       (10) 

 

0 0( )Sµ µ η= = %

2

1

2

1

1

1

n

n

k
k

k
k

⎛ ⎞
−⎜ ⎟

⎝ ⎠=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

                             (11) 

 
For faster convergence of the gradient descent with 
momentum algorithm, (10) and (11) formulas are 
proposed for determining the learning rate and 
momentum factor respectively. Results obtained from 
the experiments support this proposal. 
 
3.   MODIFIED BPM (MBPM) 
Consider the gradient descent with momentum 
algorithm for BPM. Assume that nx R∈  is the weight 
vector and ( )E x  is the error function representing the 
total squared errors for the whole input pattern set. 
Since sigmoid shaped activation functions are used in 
hidden layers, the error function ( )E x  is generally 
nonlinear. Backpropagation is a gradient descent 
algorithm for finding the minimum of the error 
function ( )E x ; hence it can be written as the 
following: 
 

1 1(1 ) ( ) ( )t t x t t tx x E x x xµ η µ+ −− = − − ∇ + −  
 
Keeping the above idea as the basis, we propose to 
modify BPM algorithm so as to work with dynamic 
dynamic efficient values of learning rate and 
momentum factor. To achieve this, at every step of the 
algorithm, we consider the right hand side of (BPM) as 
a search direction for the minimum of the local 
quadratic approximation of the error function ( )E x . If 
point the search direction with tdx  at step t , we have 
 

1(1 ) ( ) ( )t t x t t t tdx E x x xµ η µ −= − − ∇ + − ,              (12) 
 
where tη  is the dynamic learning rate and tµ  is the 
dynamic momentum factor at step t  which is 
determined by (10) and (11) respectively. In order to 
obtain these values, we have to compute Hessian 
matrix at every step. Since this computation is 
expensive, instead of using exact Hessian we can use 
an approximation which is given as [1] 

 

1
1 1( )

T T

t t T T
t t t

pp vvH H
p dx v x x−

− −

= + +
−

,                    (13) 

 
where 1( )x tp E x −= ∇ , 1( ) ( )x t x tv E x E x −= ∇ −∇  and 

1tdx −  is the previous search direction. And  
weight vector x  is updated according to the following 

1t t t tx x dxα+ = + ,                                                     (14) 
where tα  is found by the line search to minimize 

1 1( ) ( )t tE E x dxα α− −= + . 
 
Modified BPM can now be described as follows. 
 
1. Choose initial weight vector 0x . 
2. If first iteration, 

calculate 0( )E x  and 0( )xE x∇ , 
set initial search direction to negative gradient, 

0 0( )xdx E x= −∇ , 
set initial Hessian to the unit matrix, H I= . 

3. After first iteration,  
calculate change in gradient, 

1( ) ( )x t x tv E x E x −=∇ −∇  
calculate new Hessian approximation by (13) 
calculate ,η µ  using (10), (11) respectively, 
set the new search direction tdx  by (12) 

4. Check the search direction whether it is a descent 
direction or not. 
If it is not a descent direction 

set Hessian to the unit matrix, H I= , 
set search direction to negative gradient 

end if 
5. Update the weights by (14) 
6. Check for the stopping criteria. Repeat steps 3-6. 
 
 
4.   Simulation Results 
In this section the convergence behaviour of the 
proposed BP training algorithm with efficient learning 
rate and momentum (MBPM) is compared with well-
known BP training algorithms such as gradient descent 
(GD), gradient descent with adaptive learning rate 
(GDA), gradient descent with momentum (GDM), 
gradient descent with adaptive learning rate and 
momentum (GDX), scaled conjugate gradient (SCG) 
and a quasi Newton based method (BFG). Detailed 
explorations of these algorithms can be found in neural
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   Table I. Simulation Results. 

 
 
networks literature.Learning rate parameter is chosen 
as 0.01 for GD and the momentum parameter is chosen 
as 0.9 for GDM and GDX. Initial values of the weights 
are calculated by Nguyen-Widrow initialization 
method as in Matlab toolbox. Once the initial weights 
are determined then all algorithms use these initial 
weights as startup weights. Therefore all algorithms 
take the same initial weights at the startup of each 
learning process. For all tests reported, a tangent 
sigmoid transfer function was used for hidden nodes 
and a linear transfer function for the output nodes of a 
fully connected feed forward neural network. The 
learning processes terminate when the iterations are 
over a fixed number of epochs or the mean squared 
error (MSE) is less than a small threshold.  
Epoch numbers, mean squared errors (MSE) and 
running times are considered in evaluating the 
convergence performance of the algorithms. All codes 
for the simulations were written with Matlab and 
performed on an IBM Thinkpad / Centrino 1.5 Ghz 
mobile. 
XOR problem. The first test was performed with the 
exclusive-or (XOR) problem, which is the most 
popular benchmark for neural network training. The 
network architecture used for this problem consisted of 
two inputs, one hidden layer with three units and one 
output unit. The network mapped each of the four pairs 
of input patterns into the corresponding output target 
value. 
Two spirals problem. For the second training task we  
selected the “two spirals separation problem” 
examined in [10] The difficulty of this problem has  
 

 
been demonstrated in many attempts to solve the 
problem with backpropagation and several elaborated 
modifications. The input pattern set consists of the 
pairs of coordinates describing the points of two 
intertwined spirals in the x y− -plane. The network is 
trained to discriminate points lying on these two 
separate spirals. The membership of an input point to 
one or the other spiral was indicated by the target 
values 0 and 1,  
respectively. Since the BP algorithm is unable to locate 
more than suboptimal solutions of the two spirals 
problem for networks with one hidden layer [11], a 
network with two hidden layers was used. The network 
was built up of an input layer of two units, each one 
representing a coordinate, a first hidden layer with ten 
units, a second hidden layer with two units and an 
output layer with one unit.  
L-T problem. The third experiment conducted a simple 
L-T letter recognition task. The network had nine input 
units, two hidden units and a single output unit, and 
was trained to recognize the letters L and T. Each input 
pattern was a 3 3×  pixel binary image of a letter. The 
training set was formed by eight patterns, all four 
orientations for  
each letter. The letters L and T were indicated by the 
target values 0.05 and 0.95, respectively, for  
the output unit. 
 
 
5.   Conclusion 
In this paper, we focused on improving the standard 
BPM algorithm for training feedforward neural 

  BFG MBPM SCG GDX GDM GDA GD 
         

XOR Epochs 16 30 15 420 1960 173 1966 

 MSE 2.48E-06 5.41E-06 4.09E-06 0.016136 0.032367 7.47E-06 0.03237 

 Time 0.20287 0.31594 0.17574 2.0475 8.8521 0.85706 8.4043 

         

Two Spirals Epochs 506 3580 3324 10000 10000 10000 10000 

 MSE 0.22656 0.0076954 0.0044271 0.048915 0.52471 0.07582 0.52518 

 Time 8.2365 60.836 42.038 72.212 73.627 79.026 71.244 

         

L-T Epochs 25 57 41 500 8929 1136 8858 

 MSE 7.49E-06 8.53E-06 8.30E-06 9.63E-06 9.15E-05 9.83E-06 9.17E-05

 Time 0.24168 0.52452 0.33071 2 40 4.5788 38 
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networks. Local quadratic approximation of the error 
function allows us to determine optimum parameters 
for learning. We propose a new speed-up algorithm 
called MBPM based on the concept of using efficient 
learning rate and momentum factor at every stage. 
MBPM does not contain any user-dependent 
parameters whose values are crucial for the success of 
MBPM. Experimental results (table I) with the MBPM 
algorithm show that this algorithm offers much higher 
speed of convergence than the variants of conventional 
BP algorithm (GD,GDA,GDM,GDX). Consequently, 
the improvement presented can be considered as a 
valuable and viable alternative to existing methods. On 
the other hand, when compared with second-order 
methods such as BFG and SCG, MBPM shows 
considerable performance. 
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