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Abstract: - The paper reveals recent developments of the influence of the geometric imperfections on the amplitude 
of the non-linear vibrations of thin rectangular plates parametrically excited. In the region of principal parametric 
resonance, starting from the temporal non-linear differential equation that describes the oscillatory movement and 
using the second order approximation of the asymptotic method was computed the amplitude as function of system 
parameters and geometric imperfections. By varying the intensity of the geometric imperfections was obtained their 
influence upon the amplitude for the stationary non-linear dynamic response. 
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Nomenclature 
A1 ,  A2 ,  B1 ,  B2  = unknown functions in 
asymptotic expansion;   
C  = viscous damping coefficient;   
D  = f lexural  r igidity  of  plate;   
E  = Young’s modulus;   
M  = coefficient  of  the non-l inear term;  
Ny(t)  = external  in-plane loading per unit  
width;   
Ny 0  = stat ic  in-plane loading per unit  width;   
Ny t  = ampli tude of harmonic in-plane 
loading per unit  width;   
N c r  = cri t ical  buckling load of the plate,  
defined as in [14] pp.  353;  
Wp = ampli tude  of the parametric vibrat ion;  
a  = length of plate in x-direction;   
b  = length of plate in y-direction;   
f(x,y, t)  = Airy’s stress function;   
h  = plate thickness;   
t=time;  
w(x,y, t)=lateral  mid-surface displacement 
in z-direction;   

w0(x,y)  = ini t ial  geometric imperfection in 
z-direction;   
∆  = decrement of  damping;  
Λ( t)  = instantaneous frequency of the 
external  in-plane excitat ion,  Λ  = dθ /d t ;   
Ω  = free vibrat ion circular  frequency of a 
rectangular  plate loaded by a  constant  
component of  in-plane force;  
Ω =free vibration circular  frequency of a 
rectangular  plate ,  with ini t ial    geometric 
imperfections ,  loaded by a constant  
component of  in-plane force;   
ε  = small  posit ive parameter in asymptotic 
expansion,  0<ε<<1;  
θ( t)  = total  phase angle of harmonic 
excitat ion;   
µ  = load parameter of  the plate;   
ν  = Poisson’s rat io;   
ρ  = mass density  per unit  volume of plate;   
τ  = slowing t ime in asymptotic analysis;   
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ψ p( t)  = phase angle of the parametric 
vibrat ion;   
∆∆  = double i terated Laplace operator in 
R2;   

)(
•

= differentiat ion with respect  to t ime;  
(  ) ,ξ  = part ial  differentiat ion with respect  to 
ξ .  
  
 
1. Introduction  
 Extensive efforts  and considerable 
amount of  research has been concentrated 
on the predict ion of the non-l inear dynamic 
behavior of  rectangular plates with small  
deviat ion from flatness called ini t ial  
geometric imperfection.  Excellent  reviews 
on the subject  can be found in art icles 
writ ten by Hui [2-8].  Studies of  the effect  
of  geometric imperfection on the small-
ampli tude vibrat ion frequencies of  simply 
supported rectangular  plates have been 
done by Hui and Leissa [2],  I lanko and 
Dickinson [9] and Bugaru [1].    They found 
out  that  geometric imperfections of the 
order of  the plate thickness may raised the 
vibrat ion frequencies and may even cause 
the structures to exhibit  soft-spring 
behavior [7].  The survey of the l i terature 
reveals that  the work on the subject  has 
been devoted to the invest igation of various 
types of  shapes,  loadings,  and boundary 
condit ions [11-13].  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The present  work covers an exist ing gap in 
our understanding of the parametric 
resonance of continuous systems and 
presents a rat ional  analysis  of  the influence 
of geometric imperfections upon the 
ampli tude for the stat ionary non-l inear 
dynamic response.  
 
2. Conceptual Model  

The model under investigation is  an 
imperfect  rectangular plate simply 
supported along i ts  edges and acted by 
periodic in-plane forces uniformly 
distr ibuted along two opposite edges as 
shown in f igure 1.  I t  is  assumed that  the 
plate is  of  uniform thickness,  “stress free”,  
elast ic ,  homogeneous and isotropic and also 
the plate thickness and the result ing 
displacements are small  compared with the 
wavelength of lateral  vibrat ion in order to 
be able to use thin plate theory.  
Consequently ,  s ince thin plate theory is  
used in the analysis ,  the loading 
frequencies over which lateral  vibrat ions 
occur are considerably below the natural  
frequencies of  longitudinal  vibrat ions and 
in-plane inert ia forces can be neglected.  
 
 
3.Basic Equations  
 The plate theory used in this  
analysis  may be considered as the dynamic 
analogue of the von Karman large-
deflect ion theory and is  derived in terms of 
Airy’s stress function,  the lateral  
displacement and the ini t ial  geometric 
imperfection.  The differential  equations 
governing the non-l inear f lexural  vibrat ions 
of the plate are:  
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where  
                      D  = Eh3 /12(1-ν  2) .  
The boundary stress condit ions ( in-plane 
movable edges) are expressed as:  

0, =yyf   and   0, =xyf    a long   x = 0,a   (2)                

)(, tNf yxx −=   and   0, =xyf  a long y  = 0,b 

Ny ( t)  =  Ny o+Ny t  cosθ ( t)

Figure 1 
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The boundary support ing condit ions are 
expressed as:  

0,, =+= yyxx www ν      a long x  = 0,a        (3)                                                          

0,, =+= xxyy www ν      a long y  = 0,b.  
The problem consists  in determining the 
functions f  and w ,  for  a  given function w0 ,  
which sat isfy  the governing equations (1)  
together with the boundary condit ions (2)  
and (3) .  
 
 
4.  Method of Solution  
 Applying the Kantorovich’s method 
to the governing equations (3)  as in [1],  
introducing l inear damping and taking one 
term in the expansion for the lateral  
displacement,  the system is  reduced to the 
fol lowing differential  equation of motion:  
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where d  is  the ampli tude of the stat ic 
deformation of the plate [1] and 

µ  = Ny t  /  [2(N c r  –  Ny 0)]        (5)  
 This is  a  second-order non-l inear 
differential  equation with periodic 
coefficients,  which may be considered as 
an extension of the standard Mathieu-Hill’s   
equation.  

 
 

5.  Solution of The Temporal  
   Equation of Motion 
 Mathematical  techniques for solving 
such problems are l imited and approximate 
methods are generally  used.  The method of 
asymptotic expansion in powers of a small  
parameter ε ,  e laborated by Krylov and 
Bogoliubov and developed by Mitropolskii  
[10],  is  a  most  effective tool  for  studying 
non-l inear vibrat ing systems with slowly 
varying parameters.  The solution is  
developed in the region of principal  
parametric resonance that  is  defined by 

  ,2Ω≅Λ                       (6)                                          
where 

             

.θθ &==Λ
dt
d

                      (7)               

 Assuming that  the viscous damping and the 
non-l ineari ty  are small  and the 
instantaneous frequency of excitat ion and 
the load parameter vary slow with the t ime 
i .e .   

   .,, MMCC εεεµµ ===            (8)               
 The equation (4) can be writ ten,  by 
denoting  Θ  =θ ,  in the fol lowing 
asymptotic form: 
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where τ  = ε t  is  the “slowing” t ime.  For the 
second order of  approximation in ε ,  we 
seek a solution for the equation (9) in the 
fol lowing form: 
w  = Wp(τ )  cos[((1/2)Θ+ψ p)]+ 
    +ε  u(τ ,Wp ,  Θ ,  (1/2)Θ+ψ p) ,  

                                  (10) 
where Wp ,  ψ p  are functions of t ime defined 
by the system of differential  equations:  
dWp /d t  = ε  A1(τ  ,  Wp  ,  ψ p)  +  
           +ε2  A2(τ  ,  Wp ,  ψ p)  

 (11) 
dψ p /d t  = Ω  -  (1/2)Λ  + ε  B1(τ  ,  Wp ,  ψ p)  +  
           +ε2  B2  (τ  ,  Wp ,  ψ p)   
and   dΘ( t) /d t  = Λ(τ ) .  Functions u ,  A1 ,  A2 ,  
B1 ,  B2  are selected in such a way that  the w ,  
given by (10),  wil l  represent  a solution of 
the equation (9),  after  replacing Wp   and ψ p  
by the functions defined in the system (11).  
 Following the general  scheme of 
constructing asymptotic solutions and 
performing numerous transformations and 
manipulat ions,  we can f inally  arrive at  a  
system of equations describing the non-
stat ionary response of the discret ized 
system. By integrating this  system of 
equations,  ampli tude Wp  and phase angle ψ p  
can be obtained as functions of t ime from 
the following system 
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The solution w  of  the equation (9) is  
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Analyzing relat ion (14),  the paper reveals,  
for  the f irst  t ime,  new terms not  yet  
mentioned by the researchers in the f ield.    

 
 

6.  Stationary Response  
 The stat ionary response given by the 
ampli tude Wp  and the phase angle ψ p ,  
associated with the assumed spatial  forms 
of vibrat ion of our system, may be 
computed as a special  case of the non-
stat ionary motion in the resonant regime 
described by the system of equations (12) 
and equation (14).  As mentioned by 
Ostiguy and Nguyen [12,  13] the solution 
for simply-supported plates indicates the 
presence of principal  parametric resonance,  
the possibil i ty  of  internal  resonance and the 
occurrence of simultaneous resonance but  
precludes the possibil i ty  of  combination 
resonance.  As can be seen in relat ion (14),  
the authors founded for the f irst  t ime,  with 
analytical  tools,  the influence of the 
geometric imperfections in the regions of 
forced,  sub-harmonic and supra-harmonic 
parametric resonance.  In this  way was 
found theoretical  the presence of internal  
resonance and the occurrence of 
simultaneous resonance already mentioned 
experimental ly  by Ostiguy and Nguyen.  
Stat ionary principal  parametric response,  
associated with various spatial  forms of 
vibrat ion,  are given by the system (12) 
set t ing dWp /d t  = 0,  dψ p /d t  = 0 and 
el iminating ψ p  from this  system of 
equations.  Thus the stat ionary ampli tude 
Wp   can be obtained as function of external  
excitat ion frequency and represents the 
solution of the fol lowing equation 
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where iβ  are given in [1].  
As mentioned by Ostiguy and Evan-
Iwanowski [11] the base width of the 
stat ionary parametric response is  the only 
region in which vibrat ions may normally  
ini t iate.  Equation (15) makes possible to 
compute the amplitude of stat ionary 
response of the plate at  the principal  
parametric resonance by taking into 
account the geometrical  imperfections of 
the plate.   
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7. Results and Discussions 
 For the computer programs 
developed to obtain the numerical  results  
the authors used the soft  packages 
MATLAB.  
 In order to get  more insight  into 
various aspects of  the problem and to 
highlight  the influence of the ini t ial  
geometric imperfections on the non-l inear 
dynamic response of rectangular plates,  
numerical  evaluation of the solution were 
performed for a wide variety  of cases.  The 
results  shown in f igures 2 and 3 are typical  
of  those obtained.   

For ∆=0.12 were founded the 
amplitude and the phase angle of the 
vibrations for the plate subjected to 
parametric excitat ion having moderate  
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Figure 2.  wo  /  h  = 0.1 
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Figure 3.  wo  /  h  = 0.6 
 
imperfections (wo /h=0.1) and large ones 
(wo /h=0.6).By regarding the above-
mentioned figures we can conclude that  by 
increasing the imperfections appears the 
phenomena of simultaneous resonance 
mentioned by Nguyen [13].  This 

phenomena manifests  i tself  by mult iple 
sal ts  and the effect  of  “soft  spring” in the 
area of [65,85] Hz.  This was determined for 
the f irst  t ime theoretical  while Nguyen 
discovered i t  experimentally .   
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