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Abstract: - The increased interest for improved gear design has led to extensive research into the field 
of non-linear dynamics of such systems. The paper reveals a complex dynamic model to study the 
behavior in a gear-pair system taking into consideration backlash and time-dependent mesh stiffness 
and mesh damping. In many applications including turbo machinery, machine tools and diesel engines 
non-linearities are present due to tooth stiffness, damping and backlash that induced micro-vibrations 
of non-linear parametric type. In the mean time the input link of the driver ax and the output link of the 
driven ax induce non-linearities. The paper presents the use of asymptotic method in order to compute 
the frontiers of instability.  
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Nomenclature 
ci, i =1,2,3: calculus notations; 
cti,  i=1,2  : damping torsional coefficients of the 
driver and driven gear axes [Nms/rad]; 
cv : the mesh damping of gear teeth[Ns/m]; 
cvo : the mean value of mesh damping of gear 
teeth[Ns/m]; 

vc~  : the amplitude of the variation of mesh 
damping of gear teeth[Ns/m]; 

vc : the mean value of the gear tooth 
damping[Ns/m]; 
ei, i =1,2,3,4: calculus notations; 
kv : the mesh stiffness of gear teeth[N/m]; 
kvo : the mean value of mesh stiffness of gear 
teeth[N/m]; 

vk~ : the amplitude of the variation of mesh stiffness 
of gear teeth[N/m]; 

vk : the mean value of the gear tooth stiffness[N/m]; 
kti, i=1,2 : the torsional stiffness of the gear axes 
[Nm/rad]; 
ni, i=1,2 : the rotation speed of gear wheels 
[rot/min]; 

2,1i,ri = : the gear radii of the driver and driven 
gear wheels[mm]; 
s : the relative displacement of the gears into the 
pitch plane[m]; 

1s : the amplitude of the dynamic response in the 
region of fundamental resonance; 

2s : the amplitude of the dynamic response in the 
region of principal parametric resonance; 
sR  : the clearance in the pitch plane[mm]; 
zi,  i=1,2  : the  number of teeth of gear wheels; 
 J1, J2  : the mass moments of gear’s inertia with 
respect to Oz1, Oz2 axes[kg m2];  
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( ) 2,1i,tMi =  :the external torque’s loads [Nm];  
Mi0, i=1,2 : the constant external torque’s loads 
[Nm]; 
S : normalized  excitation frequency; 
α : the excitation parameter due to the mean value 
of mesh damping of gear teeth; 
αo: the excitation parameter of the amplitude of 
mesh damping variation of gear teeth; 
αn: the pressure angle [rad]; 
β: excitation parameter of the amplitude of mesh 
stiffness variation of gear teeth; 
βn: the helix angle [rad]; 
χ : the excitation parameter of the amplitude of 
mesh damping variation of gear teeth normalized 
by the excitation parameter due to the mean value 
of mesh damping of gear teeth α; 
δ : the parameter of the gear clearance; 
ε : small positive parameter in asymptotic 
expansion, 0< ε  ≤ 1; 
γ : excitation parameter due to cubic non-linearity's 
of the input-output linkages, defined by relation 
(6);  
γo : linear excitation parameter due to the stiffness 
of the driver and driven axes, defined by relation 
(6); 
γ1: excitation parameter due to the damping of the 
driver and driven axes; 
ϕi, i=1,2: rotation angle of gear wheels[rad]; 
µ : excitation parameter of the amplitude of mesh 
stiffness variation of gear teeth normalized by the 
Ω2; 
ν : the excitation frequency representing the 
frequency of entering the tooth into the pitch 
plane; 
∆: the logarithmic decrement of the damping; 
Γ: the excitation parameter due to constant 
external torques 2,1,0 =iM i ;  

Γ~  : the amplitude of the excitation parameter due 
to the harmonic variation of external torques 

( ) 2,1i,tMi = ; 
Ω : the eigen frequency of the gear-pair system. 
 
 
1. Introduction 
 The failure of geared systems is due to 
undesired high-amplitude self-excited vibrations, 
which is also a cause of instability. As sources of 
perturbation, for a geared system, may be 
mentioned: the periodic variation of the tooth 
stiffness and damping[6-8]; the geometrical errors of 

the contact between teeth, that produces micro-
impacts [11]; the variation of the external torque 
loads due to the non-linearities of input-output 
linkages. The first and the second type of 
excitations, which is present due to clearances and 
manufacturing tolerances, produce self-induced 
non-linear parametric vibrations [6], while the third 
type of excitation increases the non-linearity's 
effects of the dynamic behavior [9,10]. Many 
investigators have been working on the modeling of 
gear transmission systems using linear and non-
linear parametric dynamical models, such as 
Bolinger [1], Bolotin [2], Bosch [4], Brauer [5] and 
Diekhans [16]. Other investigators followed with 
theoretical developments and experimental studies. 
Anyhow, most of them have been investigated the 
stability problems of geared systems, because such 
self-induced non-linear parametric vibrations 
represent a major problem for the stability of the 
gear transmission systems. All of the investigators 
started in their theoretical studies with models that 
cover the physical phenomena’s that appear into a 
gear transmission. The aim of the paper is to 
improve such models for geared system and to 
enable the gear’s designer to predict the dynamic 
behavior of non-linear self-induced vibrations for 
the geared systems. 
 
 
2. The Physical Model  of a Gear Transmission 

with One Stage 
 It was considered for the model that the 
investigation must carried out for the entire pitch 
plane [16]. This fact is due to the observation that for 
a cylindrical gear the force is acting on the teeth 
into a specific spatial direction because of the 
contact between two teeth. This cause torsional 
non-linear parametric vibrations. The gear wheels 
are helical therefore the mesh teeth stiffness kv ( )iϕ  
and the mesh damping cv ( )iϕ  are influenced by the 
gear helix angle βn and the pressure angle αn [7,16]. 
This influence is given by the relations: 
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 The forces will be transmitted through the 
teeth mesh stiffness kv ( )iϕ  and the mesh damping 
cv ( )iϕ  which depend upon the rotation angle of the 
wheel. Some authors developed dynamic models 
that take into consideration the teeth clearance sR 
and therefore the influence of micro-impacts of the 
teeth [15]. The considered model takes into account 
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the backlash sR   by modeling the gear clearance 
with a non-linear symmetric spring [15] and 
introduces all the components of the forces in the 
circumferential direction. The gear load is a 
function of relative movement between the driver 
gear and the driven gear. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Physical model of a gear-pair system 
 

The new model introduces the torsional stiffness 
of the gear axes as can be seen from figure 1, that 
presents a model with two degree of freedoms for 
a gear-pair system. Using the Lagrange's 
equations, the differential system of equations for 
the vibrating movement is  
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where s is the relative displacement of the gears 
into the pitch plane: 

( ) 2211 ϕ−ϕ⋅== rrtss .                   (3)                                 
Multiplying the first equation of system (2) by 
r1/J1, the second one by  r2/J2 and making the 
difference between them it was computed the 
differential equation of the non-linear parametric 
vibrations of the helical gear-pair system in the 
pitch plane: 
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The right hand term of equation (4) can be 
expressed as: 
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where  f( Γ, t) produces static deflection of the gear 
teeth and induces the harmonic external forced 
excitation due to the harmonic variation of the 
external torques. The other terms induce the 

effects of torsional stiffness of the gear axes γo, the 
torsional  damping of the gear axes γ1 and the non-
linearities of the input-output linkages γ in order to 
transmit the external torques M1 and M2. This  
terms are defined by the relations: 
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                                                                              (6) 
considering that the cubic non-linearities are very 
small and the variation of external torque loads is 
10%. In equation (4) can be neglect the term Γ can 
be neglect because it produces only the static 
deflection and the paper deals only with the 
dynamic behavior of the system. Equation (4) is a 
bi-parametric one because of the variation of ( )tkv  
and also because the damping cv(t)  that depends 
upon the stiffness [7,8,16]. Taking into consideration 
the experimental data [7,8,16],  the mesh stiffness 
( )tkv  and the mesh damping cv(t)  for helical gears 

can be expressed by the mathematical relations 
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The relation between the mesh stiffness and the 
mesh damping is given by[7,16] 

πν
∆

= v
v

k
c ,                         (8) 

where the excitation frequency is 

 .
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Equation (4) is a non-linear differential equation 
because of  the non-linear term expressed by (6) 
that is due to the link flange of the gear 
transmission [6]. Taking into account that the 
perturbation in  equation (4) has a non-linear 
variation expressed by relations (5),(6) and also 
equation (4) has a bi-parametric mathematical form 
given by the expressions (7)-(9), this can be put 
into  the mathematical form 
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In equation (10), the eigen  frequency Ω and the 
excitation parameter µ of the mesh stiffness are 
given by the expressions 

0
2

2
2

1

2
1

0
γ−








+=Ω

J
r

J
r

kV ,    

,
~

,
2

2
2

1

2
1

0
2

2
2

1

2
1

0

0









+=β

γ−







+

β
=µ

J
r

J
rk

J
r

J
rk

V

V

      (11) 

 where α and αo are the excitation parameter due to 
the mean value of mesh damping and the 
excitation parameter of the amplitude of mesh 
damping variation expressed by the relations 
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(12)                                            
In expressions (12) the relations (7) and (8) were 
used. From the equation (10) is missing only the 
term that introduces the backlash effect given by 
the gear clearances, which induces micro-impacts 
between the gear teeth flanks. Modeling the gear 
clearance with a non-linear symmetric spring [15] 
equation (10) becomes 
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(13) 
Equation (13) is a second-order non-homogeneous 
bi-parametric non-linear differential equation and 
has a mathematical form of a modified non-linear 
Mathieu-Duffing-Hill equation. Equation (13) 
represents the equation of motion of the relative 
displacement between the gear flanks in the pitch 
plane taking into account the following 
phenomena's of the dynamics of helical gear-pair 
system: 
- the time-dependent variation of the gear mesh 

stiffness and gear mesh damping [5-8], 
- the backlash that induces micro-impacts on the 

teeth flanks [15], 
- the interaction between gear mesh stiffness 

and gear mesh damping [7,8,11], 
- the torsional stiffness and the torsional 

damping of the driver and driven gear axes, 
- the non-linearities of the input-output linkages 

[8], 
- the time-dependent variation of the external 

torques loads [11,15], 

-   the influence of the gear helix angle and the 
pressure angle on the mesh teeth stiffness and 
the mesh damping [6,16]. 

The stationary response has amplitude in the region 
of fundamental resonance 1s  and the amplitude in 
the region of principal parametric resonance 

2s given by the expressions 
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(15) 
after the use of the asymptotic method as can be 
seen from the part 1 of this paper.  
           

3. Boundaries of the Regions of Principal 
Parametric Instability 
The base width of the stationary dynamic response 
in the region of principal parametric resonance is the 
region in which principal parametric vibrations may 
normally be initiated. By setting the amplitudes 1s , 

2s  to zero in the region of principal parametric 
resonance the boundaries of the principal region of 
instability can be obtained from equation (15). The 
normalized excitation frequency S and the excitation 
parameter of the amplitude of mesh damping 
variation of gear teeth χ are 
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Setting to zero the amplitudes 1s , 2s  in equation 
(15) yields the equation  
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Equation (17) of fourth degree in S  makes it 
possible to compute the boundaries of the principal 
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region of instability in the parameter normalized 
space (S, µ, χ). 
 
 
4.Results and Conclusions 
 The numerical results for the instability 
frontiers, based on the equation (17), are presented 
in the figures 2,3 and 4. The instability region is 
closed between the surface branches in the 
parametric space (ν, χ, µ). As can be seen at the 
increase in the values of ∆ the volume of the 
instability region increases, so that we can conclude 
that in fact the damping is an excitation factor as 
expected from the equation (13).  
The paper highlights all of the qualitative 
connections between the values of a wide range of 
parameters that occur in order to establish the 
instability frontiers of a helical gear-pair system 
with backlash parametrically excited. 

 

 
Figure 2. Instability frontiers for ∆=0.05. 

 

 
Figure 3. Instability frontiers for ∆=0.1. 

 
Figure 4. Instability frontiers for ∆=0.3. 
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