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Abstract:  The increased interest for improved gear design has led to extensive research into the field of non-
linear dynamics of such systems. The paper reveals a complex dynamic model to study the behavior in a gear-
pair system taking into consideration backlash and time-dependent mesh stiffness and mesh damping. In many 
applications including turbo machinery, machine tools and diesel engines non-linearities are present due to 
tooth stiffness, damping and backlash that induced micro-vibrations of non-linear parametric type. In the mean 
time the input link of the driver ax and the output link of the driven ax induce non-linearities. The paper 
presents the use of asymptotic method in order to compute the amplitude of steady state motion. By this way 
the paper reveals the phenomena's characteristics of multiple jumps specific to the non-linear dynamic behavior 
of gear-pair due to: non-linearities of the input-output linkages, backlash and self-induced parametric 
excitations, caused by the tooth stiffness and damping. It was highlighted the interaction between fundamental 
resonance and the principal parametric resonance.   
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Nomenclature 
ci, i =1,2,3: calculus notations; 
cti,  i=1,2  : damping torsional coefficients of the 
driver and driven gear axes [Nms/rad]; 
cv : the mesh damping of gear teeth[Ns/m]; 
cvo : the mean value of mesh damping of gear 
teeth[Ns/m]; 

vc~  : the amplitude of the variation of mesh 
damping of gear teeth [Ns/m]; 

vc : the mean value of the gear tooth damping 
[Ns/m]; 
ei, i =1,2,3,4: calculus notations; 
kv: the mesh stiffness of gear teeth [N/m]; 
kvo : the mean value of mesh stiffness of gear teeth 
[N/m]; 

vk
~ : the amplitude of the variation of mesh stiffness 
of gear teeth [N/m]; 

vk : the mean value of the gear tooth stiffness 
[N/m]; 
kti, i=1,2 : the torsional stiffness of the gear axes 
[Nm/rad]; 
ni, i=1,2 : the rotation speed of gear wheels 
[rot/min]; 

2,1, =iri : the gear radii of the driver and driven 
gear wheels[mm]; 
s : the relative displacement of the gears into the 
pitching plane[m]; 

1s : the amplitude of the dynamic response in the 
region of fundamental resonance; 

2s : the amplitude of the dynamic response in the 
region of principal parametric resonance; 
sR  : the clearance in the pitching plane[mm]; 
zi,  i=1,2  : the  number of teeth of gear wheels; 
Ai, Bi, i=1,2  : unknown function in asymptotic 
expansion, equations (21) and (22); 
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),,,( ssH &θτ : perturbation term in equation (18); 
 J1, J2  : the mass moments of gear’s inertia with 
respect to Oz1, Oz2 axes[kg m2];  
LHS: left hand side in equations; 

( ) 2,1, =itM i  : the external torque loads [Nm];  
Mi0, i=1,2 : the constant external torque loads 
[Nm]; 
RHS: right hand side in equations; 
α : the excitation parameter due to the mean value 
of mesh damping of gear teeth, defined by relation 
(12); 
αo: the excitation parameter of the amplitude of 
mesh damping variation of gear teeth, defined by 
relation (12); 
αn: the pressure angle [rad]; 
β: excitation parameter of the amplitude of mesh 
stiffness variation of gear teeth, defined by relation 
(11); 
βn: the helix angle [rad]; 
δ : the parameter of the gear clearance; 
ε : small positive parameter in asymptotic 
expansion, 0< ε  ≤ 1; 
γ : excitation parameter due to cubic non-linearity's 
of the input-output linkages, defined by relation 
(6);  
γo : linear excitation parameter due to the stiffness 
of the driver and driven axes, defined by relation 
(6); 
γ1: excitation parameter due to the damping of the 
driver and driven axes, defined by relation (6); 
ϕi, i=1,2: rotation angle of gear wheels[rad]; 
µ : excitation parameter of the amplitude of mesh 
stiffness variation of gear teeth normalized by the 
Ω2, defined by relation (11); 
τ : the slowing time, defined by relation (15); 
ν : the excitation frequency representing the 
frequency of entering the tooth into the pitching 
plane, defined by relation (9) [rad/s]; 
ξ1: the total phase angle of the dynamic response in 
the region of fundamental resonance, defined by 
relation (20); 
ξ2: the total phase angle of the dynamic response in 
the region of principal parametric resonance, 
defined by relation (20); 
∆: the logarithmic decrement of the damping; 
Γ: excitation parameter due to constant external 
torque's loads 2,1,0 =iM i , defined by relation (6);  
Γ
~  : the amplitude of the excitation parameter due 
to the harmonic variation of external torque's loads 

( ) 2,1, =itM i , defined by relation (6) ; 
Ω : the eigen frequency of the gear-pair system, 
defined by relation  (11) [Hz]; 
Ψ1: the phase angle of the dynamic response in the 
region of fundamental resonance; 

Ψ2:  the phase angle of the dynamic response in the 
region of principal parametric resonance. 
  
 
1. Introduction 
 The failure of geared systems is due to 
undesired high-amplitude self-excited vibrations, 
which is also a cause of instability. As sources of 
perturbation, for a geared system, may be 
mentioned: the periodic variation of the tooth 
stiffness and damping[6-8]; the geometrical errors of 
the contact between teeth, that produces micro-
impacts [11]; the variation of the external torque 
loads due to the non-linearities of input-output 
linkages. The first and the second type of 
excitations, which is present due to clearances and 
manufacturing tolerances, produce self-induced 
non-linear parametric vibrations [6], while the third 
type of excitation increases the non-linearity's 
effects of the dynamic behavior [9,10]. Many 
investigators have been working on the modeling 
of gear transmission systems using linear and non-
linear parametric dynamical models, such as 
Bolinger [1], Bolotin [2], Bosch [4], Brauer [5] and 
Diekhans [16]. Other investigators followed with 
theoretical developments and experimental studies. 
Anyhow, most of them have been investigated the 
stability problems of geared systems, because such 
self-induced non-linear parametric vibrations 
represent a major problem for the stability of the 
gear transmission systems. All of the investigators 
started in their theoretical studies with models that 
cover the physical phenomena’s that appear into a 
gear transmission. The aim of the paper is to 
improve such models for geared system and to 
enable the gear’s designer to predict the dynamic 
behavior of non-linear self-induced vibrations for 
the geared systems. 
 
 
2. The Physical Model  of a Gear Transmission 

with One Stage 
 It was considered for the model that the 
investigation must carried out for the entire pitch 
plane [16]. This fact is due to the observation that for 
a cylindrical gear the force is acting on the teeth 
into a specific spatial direction because of the 
contact between two teeth. This cause torsional 
non-linear parametric vibrations. The gear wheels 
are helical therefore the mesh teeth stiffness kv ( )iϕ  
and the mesh damping cv ( )iϕ  are influenced by the 
gear helix angle βn and the pressure angle αn [7,16]. 
This influence is given by the relations: 

.]cos[cos

,]cos[cos
2

2

nnvv

nnvv
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βα=

βα=
                   (1)                   
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 The forces will be transmitted through the 
teeth mesh stiffness kv ( )iϕ  and the mesh damping 
cv ( )iϕ  which depend upon the rotation angle of the 
wheel. Some authors developed dynamic models 
that take into consideration the teeth clearance sR 
and therefore the influence of micro-impacts of the 
teeth [15]. The considered model takes into account 
the backlash sR   by modeling the gear clearance 
with a non-linear symmetric spring [15] and 
introduces all the components of the forces in the 
circumferential direction. The gear load is a 
function of relative movement between the driver 
gear and the driven gear. 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1. Physical model of a gear-pair system 

 
The new model introduces the torsional stiffness of 
the gear axes as can be seen from figure 1, that 
presents a model with two degree of freedoms for a 
gear-pair system. Using the Lagrange's equations, 
the differential system of equations for the 
vibrating movement is  

22222
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where s is the relative displacement of the gears 
into the pitching plane: 

( ) 2211 ϕ−ϕ⋅== rrtss .                   (3)                                 
Multiplying the first equation of system (2) by 
r1/J1, the second one by  r2/J2 and making the 
difference between them it was computed the 
differential equation of the non-linear parametric 
vibrations of the helical gear-pair system in the 
pitch plane: 
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The right hand term of equation (4) can be 
expressed as: 

3
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⋅γ−γ+⋅γ+Γ=+ &    (5)                         

where  f( Γ, t) produces static deflection of the gear 
teeth and induces the harmonic external forced 

excitation due to the harmonic variation of the 
external torques. The other terms induce the effects 
of torsional stiffness of the gear axes γo, the 
torsional  damping of the gear axes γ1 and the non-
linearities of the input-output linkages γ in order to 
transmit the external torques M1 and M2. This  
terms are defined by the relations: 
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                                                                              (6) 
considering that the cubic non-linearities are very 
small and the variation of external torque loads is 
10%. In equation (4) can be neglect the term Γ can 
be neglect because it produces only the static 
deflection and the paper deals only with the 
dynamic behavior of the system. Equation (4) is a 
bi-parametric one because of the variation of ( )tkv  
and also because the damping cv(t)  that depends 
upon the stiffness [7,8,16]. Taking into consideration 
the experimental data [7,8,16],  the mesh stiffness 
( )tkv  and the mesh damping cv(t)  for helical gears 

can be expressed by the mathematical relations 

                          
.cos~)(
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~
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vvov

ν+=
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                 (7) 

The relation between the mesh stiffness and the 
mesh damping is given by[7,16] 

πν
∆

= v
v

k
c ,                         (8) 

where the excitation frequency is 

 .
3030

2211 nznz π
=

π
=ν                   (9) 

Equation (4) is a non-linear differential equation 
because of  the non-linear term expressed by (6) 
that is due to the link flange of the gear 
transmission [6]. Taking into account that the 
perturbation in  equation (4) has a non-linear 
variation expressed by relations (5),(6) and also 
equation (4) has a bi-parametric mathematical form 
given by the expressions (7)-(9), this can be put 
into  the mathematical form 

.cos~)cos1()cos( 32
0 tsststs νΓ=γ+νµ+Ω+να+α+ &&&  

(10) 
In equation (10), the eigen  frequency Ω and the 
excitation parameter µ of the mesh stiffness are 
given by the expressions 
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 where α and αo are the excitation parameter due to 
the mean value of mesh damping and the excitation 
parameter of the amplitude of mesh damping 
variation expressed by the relations 
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In expressions (12) the relations (7) and (8) were 
used. From the equation (10) is missing only the 
term that introduces the backlash effect given by 
the gear clearances, which induces micro-impacts 
between the gear teeth flanks. Modeling the gear 
clearance with a non-linear symmetric spring [15] 
equation (10) becomes 
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+++Ω+++ &&&
                                     

(13) 
Equation (13) is a second-order non-homogeneous 
bi-parametric non-linear differential equation and 
has a mathematical form of a modified non-linear 
Mathieu-Duffing- Hill equation. Equation (13) 
represents the equation of motion of the relative 
displacement between the gear flanks in the pitch 
plane taking into account the following 
phenomena's of the dynamics of helical gear-pair 
system: 
- the time-dependent variation of the gear mesh 

stiffness and gear mesh damping [5-8], 
- the backlash that induces micro-impacts on the 

teeth flanks [15], 
- the interaction between gear mesh stiffness and 

gear mesh damping [7,8,11], 
- the torsional stiffness and the torsional 

damping of the driver and driven gear axes, 
- the non-linearities of the input-output linkages 

[8], 
- the time-dependent variation of the external 

torques loads [11,15], 
-  the influence of the gear helix angle and the 

pressure angle on the mesh teeth stiffness and 
the mesh damping [6,16]. 

 
 
3. Asymptotic Solution of The Motion Equation 
A rigorous investigation of non-linear differential 
equations in the general case leads to serious 
mathematical difficulties. However, a broad class of 

differential equations exists that can be solved by 
effective approximate methods. In particular, the 
equations describing the vibrations of geared 
systems belong to this class of equations.  The 
author had used the asymptotic method [14] in 
previous analytical investigations [9,10], therefore this 
method is considered one of the most effective tool 
for analyzing non-linear vibrations of geared 
systems. For equation (13) a first order 
approximation of asymptotic method shall be 
determined, with the assumption that the non-linear 
vibrating geared system has slowly varying 
parameters. Also it is assumed that the excitation 
frequency varies slowly with the time, i.e., 

,),(
d
d t

t
ν=θτν=

θ
                   (14) 

where τ is the slowing time defined by    
.tε=τ                               (15) 

All the parameters of the system are formally 
incorporated in the asymptotic method by 
representing these quantities in the form 

,~~,,,,, 00 Γε=Γγε=γδε=δµε=µαε=ααε=α                   
(16) 

that is an expansion in terms of the small positive 
parameter  ε .  Use of exactly the same notation for 
each is made for convenience. Equation (13) 
becomes, after terms of first order in ε  are 
considered and transferred to the right-hand side 
(RHS),   
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(17) 
Equation (17) may be symbolically represented as 

),,,,(2 ssHss &&& θτε=Ω+                  (18) 
where the perturbation ),,,( ssH &θτ  on the RHS is a 
function periodic in θ with period 2π. The left-hand 
side (LHS) of equation (18) represents a linear 
oscillator. When the perturbation is absent, ε =0, 
and τ is constant, the solution of equation (18) will 
be expressed by a sinusoidal function, with an 
amplitude and phase of oscillation defined by initial 
conditions. In the presence of a perturbation ( ε ≠0), 
overtones may occur and various resonance’s may 
take place. The presence of slowly varying time τ 
also give rises in the system to a number of 
additional phenomena not observable in oscillating 
systems described by an equation with constant 
parameters. Resonance phenomena in nonlinear 
vibrating systems under the action of external 
periodic forces may ensue upon the fulfillment of 
the condition 

   ,Ω≈ν
l
k

                             (19) 
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where k and l are mutually prime integers, usually 
small. Taking into account all these physical 
considerations and confining our attention to the 
investigation of fundamental resonance ( k =1, l =1) 
and principal parametric resonance ( k =2, l =1), the 
solution of equation (18) is sought in the following 
form ( to the first order of approximation in ε ) 

22112211 coscos)
2
1cos()cos( ξ+ξ=Ψ+θ+Ψ+θ= sssss

                                                                             (20) 
where the amplitudes 21, ss  and the phase angles 

21,ΨΨ  are functions of time defined by the systems 
of differential equations 
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The functions Ai, Bi  are selected  in such a way that 
equation (20), after replacing 2121 and,, ΨΨss  by the 
functions defined in equations (21) and (22), would 
represent a solution of equation (17). As can be 
seen from the systems of differential equations (21) 
and (22) the interaction between the fundamental 
resonance and the principal parametric resonance is 
taken into account. It is instructive to keep in mind 
that if  Z is a function of τ, i.e., Z =Z (τ), then 

 
τ
τ

ε=
τ

τ
τ

=
τ

d
Zd

dt
d

d
Zd

dt
Zd )()()( .         (23) 

Computing the LHS of equation (17) by using the 
equations (20-22), with respect to the 
differentiation given by equation (23) and 
expanding the result in powers of ε , gives the 
following 
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Computing the RHS of equation (17) by using the 
equations (20-22), with respect to the 
differentiation given by equation (23) and 
expanding the result in powers of ε , gives  
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(25) 
In expressions (24) and (25) the terms in 32 and εε  
are neglected. In order that the assumed solution 
(20) may formally satisfy equation (17), was 
performed a harmonic balance within the 
coefficients of  2211 sinandcos,sin,cos ξεξεξεξε  
for RHS and LHS expressed by (24) and (25). This 
yields the two following coupled systems of first 
order differential equations for the unknown 
functions A1, A2, B1, B2 

( )










Ωα−ΨΓ−=
Ψ∂

∂
ν−Ω+Ω

δΩ+γ−ΨΓ=Ω−ν−Ω
Ψ∂
∂

,sin~)(2

,
4
3cos~2)(

11
1

1
11

3
1

2
111

1

1

sBsA

sBsA

                  

(26) 





















Ω−ΨΩ+ΨΩ=

=
Ψ∂

∂






 −Ω+Ω







 +Ω+−

−ΨΩ+ΨΩ−=

=Ω−





 −Ω

Ψ∂
∂

.2sin
2
12cos

2
1

2
12

,
2
3

4
3)(

2sin
2
12cos

2
1

2
2
1

222
2

220

2

2
22

2
2

1
3
2

2

22022
2

22
2

2

sss

B
sA

sss

ss

Bs
A

αµα

ν

δγ

αµ

ν

                  

(27) 
After solving the systems (26) and (27) and 
transforming all systems parameters back to their 
real time values, the systems of differential 
equations (21) and (22) become 
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             (29) 
The systems (28) and (29) define the rate of the 
change of amplitudes and phase angles as functions 
the slowly varying frequency of external periodic 
excitation ν. By integrating this coupled systems of 
equations, the amplitudes 1s , 2s  and the phase 
angles Ψ1, Ψ2 can be obtained as functions of time 
and the relative displacement of the gears in the 
pitch plane s, that completely describes the non-
stationary  vibrational process in both the 
fundamental resonance region and the principal 
parametric resonance region, can then be computed 
from the equation (20) in the first approximation. 
 
 

4. Stationary Response  
 For obtaining stationary values of the 
amplitudes 1s , 2s  it is necessary to equate the right-
hand sides of the systems (28) and (29) to zero and 
using the trigonometric identities 
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eliminated  Ψ1 and Ψ2 from the systems (28) and 
(29), yielding the following cubic and quadratic 
equations in 2
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After solving, the cubic equation in 2

1s  (30), the 
quadratic equation in 2

2s  by numerical methods, 
(31) has the solution 
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5. Results and Conclusions 
 Numerical results for the stationary 
responses for fundamental resonance and principal 
parametric resonance of helical gear pair system are 
shown in figures 2 through 4 for a wide variety of 
cases. All numerical results are based on equation 
(30) for 1s  and equation (32) for 2s . Bigger values 
of   Γ~  make possible the occurrence of the second 
branch of the amplitude in the region of principal 
parametric resonance, as shown in figures 2, 3 and 
4. Incrementing the value of  logarithmic decrement 
of the damping ∆ has a neglecting effect on the 
amplitude in the region of  fundamental resonance 
but in the region of principal parametric resonance 
induce the increment of the second branch of the 
amplitude, as presented in figures 2 and 3. As can be 
seen in figure 4, for the value  ∆=0.03 the 
amplitudes branches, in the region of principal 
parametric resonance, disappear, their values 
suddenly decrease and the non-linear effect doesn't 
manifest itself on the shape of the amplitude. This 
phenomenon can be explain by the fact that the 
damping has a mixed effect of stabilization for the 
vibrating motion, being in the mean time a factor of 
excitation, if it is taken into account the bi-
parametric equation of the vibrating system (13). By 
this way the paper highlights all the qualitative 
connections between the values of a wide range of 
parameters that occur  at the non-linear dynamic 
behavior of a helical gear-pair system parametrically 
excited. 
 
 

 

 
 

Figure 2. The amplitudes 21, ss  for the 
stationary dynamic response in the region of 

fundamental resonance  
ν ≅ Ω and in the region of principal parametric 

resonance ν ≅ 2Ω for the parameters    
∆=0.01; µ = 0.01; Γ~ = 0.5; γ > 0 ; δ > 0.
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Figure 3. The amplitudes 21, ss  for the stationary 
dynamic response in the region of fundamental 

resonance  
ν ≅ Ω and in the region of principal parametric 

resonance ν ≅ 2Ω for the parameters  
∆=0.02; µ = 0.01; Γ~ = 0.5;  γ > 0 ; δ > 0. 

Figure 4. The amplitudes 21, ss  for the 
stationary dynamic response in the region of 

fundamental resonance ν ≅ Ω and in the 
region of principal parametric resonance ν ≅ 

2Ω for the parameters  
∆=0.03; µ = 0.01; Γ~ = 0.5; γ > 0 ; δ > 0. 
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