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Abstract: - Dynamic factors of crew pairing problem can make it more realistic. A stable algorithm without 

parameter adjustment is important for the dynamic crew-pairing problem as well as the schedule operator. The 

available seats for deadhead trips become the main dynamic factor of the cargo crew-pairing problem. Since it 

is the one of the factors hard to be controlled by the traditional crew- pairing problem. An improved genetic 

algorithm for solving this dynamic cargo crew-pairing problem has been developed in this paper. The test data 

is the real scenario of an international airline in Taiwan. The result shows that the algorithm is more 

advantageous than the existing technology, either in the cost or in the performance of generating the solution. 
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1. Introduction 
From the basic flight sector, duty, pairing to the 

roster of the crew, this is actually a four-layered 

hierarchy of the formation of the crew schedule. The 

crew-pairing problem is the first process of the 

crew-scheduling problem. It generates the duties 

from flight sectors and the pairings from duties. 

Thus a pairing is the combination of several duties. 

The following process is the crew rostering problem, 

which assigns the pairings to crews based on the 

result of crew pairing problem. This paper considers 

only the crew-pairing problem and assumes the 

duties are predetermined as well as the number of 

required crews for the duties. The schedule operator 

of an international airline also puts his main effort 

on the pairing generating process since most of the 

duties contain only one flight sector.  

The dynamic factors of cargo crew pairing 

problem are the number of pilots in the duty, the 

number of unoccupied seats in a freighter and the 

number of flights. First, crew-pairing problem 

traditionally ignores the differential number of 

crews between duties for the reason of simplifying 

the problem. It was assumed that a duty only 

consists of a single flight sector before. Usually the 

maximum number of crews in a duty is four, which 

is designed for a long flight. The minimum number 

is two, which is for a short flight. Three pilots are 

allocated for a medium flight. Each pilot in a duty 

corresponds to a rank of crew. The assignment of 

different ranks of crews containing in a duty is for 

the reason of safety operation. So the crew-paring 

problem becomes to the crew-paring problem for 

every rank of crew solving rank by rank. To 

simplify the problem, this paper takes this factor as 

a given condition. Second, the freighter is mainly 

used for the cargo carriage. There are no seats in the 

cabin. Thus the seats in the cockpit limit from 4 to 8 

depending on the type of aircraft. For example, the 

number of seats in MD-11F is four. If a duty 

requires three pilots on that plane, then there is only 

one seat left for a deadhead trip. When this aircraft 

hands over to the other three pilots, this will cause 

the original three pilots to take different aircraft to 

travel as a passenger and result to operate with three 

different pairings since they must be moved to the 

other airports to continue their duties. Thus the main 

difference between the cargo flights and the 

passenger flights is the shortage of the seats for a 

deadhead trip in a freighter with limited seats. In 

this paper, this is the key to make this problem as a 

dynamic problem. Once the pairings of one crew 

type has been determined, the cost of the pairings of 

the other crew type will be affected by the 

utilization of the seats in the previous crew-pairing 

stage. Third, the demand of goods varies from time 

to time. The schedule of cargo flight therefore has 

its fundamental uncertainty and the variety of the 

number of flights between every month. In practical 

condition, this factor can be treated as a given data 
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for determining the crew pairings month by month. 

The above features form the traditional stationary 

crew-pairing problem as a dynamic cargo crew-

pairing problem.  

Traditional stationary crew pairing problem is 

usually formulated as a set-partitioning problem 

proposed by Barnhart [3]. It is expressed as follows, 
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where yp equals to 1 if pairing p is in the solution, 

and 0 otherwise. F is the set of flight segments and P 

is the set of pairings. A column p has a 1 in row i if 

the flight i is flown by pairing p, and cp is the cost of 

pairing p. This model guarantees each flight sector 

is covered once and that the total cost is minimized. 

There are many approaches to solve this problem, 

including Branch and Bound method (see Ernst [12] 

and Anbil [2], for example), column generation (see 

Anbil [1]; Crainic and Rousseau [9], Desrosiers and 

L¨ubbecke [10], Lavoie [18], for example), hybrid 

method of combining Branch and Bound and 

column generation (see Barnhart [4], Desaulniers 

[11] and Freling [14], for example), network flow 

models (see Yan and Tu [24], Guo [16] and 

Mellouli [20][21], for example), simulated 

annealing algorithm (see Emden-Weinert and 

Proksch[13]), tabu search (see Cavique [8], for 

example) and genetic algorithm (see Beasley and 

Chu [5], Levine [19], Ozdemir and Mohan [22], 

Chang [7], for example) 

Based on the eq. (1), the dynamic cargo crew-

pairing problem in general can be revised as follows, 
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where this equation introduces the phase factor, t, 

which stands for the four types of crews and the 

scheduling period of this problem. For example, if 

there are three months of flight to be scheduled, then 

t will be expressed by a time series set from one to 

twelve. The first four numbers stand for the 

scheduling sequences of the four types of crew in 

the first month. The following four numbers, i.e., 

from 5 to 8, stand for the next month and the last 

four numbers are for the last month. However, to 

keep this problem a moderate size to solve, the t in 

this paper stands for 4 numbers at a time. Constraint 

st.1 allows the assignment of deadhead trips. A new 

constraint, st.2, is to ensure that in all phase the 

summation of assigned crew in flight i will not 

exceed the seat capacity of flight i, Fi
c
. The 

constraint st.2 will enlarge the problem size of eq. 

(1). Also in the real world, there are still many other 

regulations to be added in eq. (2) as stated in the 

following section. It will be hard to use the 

traditional approach to proof the existence of the 

global optimum for the dynamic problem time after 

time and solve that problem in an acceptable time 

period as Branke [6] stated in his paper that 

“If the optimization problem is dynamic, the goal is 

no longer to find the extremum, but to track their 

progression through the space as closely as 

possible.” 

The genetic algorithm, GA, based heuristic 

algorithm, can provide flexibility in handling the 

dynamic factors and the variations of the model 

such as constraints in cumulative flight time, 

mandatory rest periods, or limits in the amount of 

work allocated to a particular base by modifying the 

evaluation function. Most traditional methods may 

have trouble accommodating the addition of new 

constraint as easily. GA works directly with integer 

solutions. There is no need to solve the LP 

relaxation. It can also be run as a model combining 

the simulation and optimisation to take the dynamic 

factors into consideration. Its main flaw is the time 

of convergence. Two manoeuvres are also 

developed to improve the performance of the 

conventional genetic algorithm. The test case in this 

paper considers for a real world application of an 

international airline in Taiwan.  

2. Problem Formulation 
To enhance the performance of problem solving, 

this paper separates the routes into few uncorrelated 

areas, such as Pan-American area and Pan-European 

area. The pan-American area, AMS, includes the 

flights from pacific Asia to American. The pan-

European area, EUR, includes the flights from 

pacific Asia, mid east of Asia and to Europe. The 

seat capacity of the cockpit of the freighter allows 

only for four pilots at a time. The test data used in 

this paper was the real scenario in August of 2004. 

In case of that some deadhead trips are cheaper or 
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faster than taken the cargo flights. The alternative 

flights for deadhead trip include not only the cargo 

flights but also the passenger flights. The other 

information about the flights and the flight for the 

deadhead trips of the test data is summarized in the 

following Table 1. 

Table 1. Characteristics of test cases  

Test data of month August 

Items\Area AMS EUR 

Number of Flights 300 476 

Number of Airports 7 18 

Average Frequency 43 26 

Number of Hotels 34 

Number of alternative flights for 

deadhead trip 7022 

2.1. The problem objectives 
The followings are 5 types of objectives considered 

in this paper.  

1. The amount of the required deadhead trips in the 

pairing generating process, pnc_counts. The 

assumption is that at most two deadhead trips can be 

applied to connect either from the base to the airport 

or from the airport to the base. At most one 

deadhead trip can be applied to connect between 

two non-base airports.  

2. The total flight time of all deadhead trips in the 

solution, pnc_time. This constraint can make the 

choice of deadhead trips prefer to a shorter flight.  

3. The hours of the generated pairings, Perdiem, 

which uses the unit of hour to express the duration 

of all pairings. 

4. The days of the generated pairings, Manday, 

which uses the unit of day to express the duration of 

all pairings. 

5. The maximum length of a pairing, PMD. It 

checks if the pairing exceeds the predetermined 

threshold.  

The objective function defined here is a bit 

different with the one in the result comparison with 

the experienced operator. The objective function is 

used for finding the correct direction of the solution. 

The actual cost of the crew pairings will be 

calculated while comparing to the experienced 

operator. The objective function is defined as 

follows, 
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where the W_pnc_counts represents the weight of 

pnc_counts between all other objectives. The 

W_pnc_time represents the weight of pnc_time 

between all other objectives. The W_Perdiem 

represents the weight of Perdiem between all other 

objectives. The W_Manday represents the weight of 

Manday between all other objectives. The W_PMD 

represents the weight of PMD between all other 

objectives. 

2.2. Constraints 
There are 8 kinds of constraints considered in this 

paper. Seven of them are related to the crew pairing 

generation for each crew type and are defined as 

followings, 

1. The number of misconnection between airports in 

a solution, pnc_err. It counts those misconnected 

routes, which cannot be found in the alternative 

flight lists. In our experience, this constraint can 

always be satisfied if it reaches a feasible solution. 

Or the data must be wrong. Because the aircrafts are 

always flown out from the base and back to the base 

eventually, so the problem of connection will be 

only on the frequency of that route of flight.  

2. Constraint mrt is to check if the minimum rest 

time between duties of a pairing is enough. This 

regulation depends on the length of flight time and 

flight duty period. The regular rest time is derived 

from flight time. For example, if the flight time is 

between 10 and 14 hours, then the regular rest time 

should have 16 hours. The flight duty period is the 

period of time from check-in to checkout. If the 

deadhead trip is connected to the duty within 4 

hours, then the calculation of duty time should 

consider the flight time of this deadhead trip. The 

minimum rest time will be the longest one between 

the regular rest time and the flight duty period plus 

few hours, i.e. max (regular rest time, flight duty 

period+2 hours). The 4 hours are the rule for 

judging the independency of the deadhead trip.  

3. The pairing should start from the base and return 
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to the base, base2base. This is the definition of 

being a pairing.  

4. Maximum weekly flight time, 7d32hrs. It checks 

if the flight time of a pairing within 7 consecutive 

days is more than 32 hours.  

5. Minimum weekly rest time, 7d24hrs. It checks if 

there exists a period of rest time within 7 

consecutive days being at least 24 hours. This 

constraint is valid only for the duration of pairing 

being over 7 days.  

6. The pilot acclimation constraint, TimeDiff. It is to 

check if the next rest period within a pairing is 

enough whenever the time difference of a duty 

exceeds the regulation.  

7. Constraint LongFT verifies that the rest period 

within a pairing is not enough prior to returning the 

base whenever the flight time of a duty is over 11 

hours.  

The last one is the summation of the assignment 

of the deadhead trips in all crew types cannot 

exceed the capacity of the seats in a flight. It will be 

handled in the function of deadhead_quota_calc(p) 

as shown in Algorithm 1. If any one of them has 

been violated, then it will be punished by its 

corresponding penalty. The penalty function for the 

violation of constraints is formulated as follows, 

P_LongFT(x)V_LongFT
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P_7d24hrs(x)V_7d24hrs
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where V_pnc_err is the number of violating the 

pnc_err constraint. P_pnc_err is its corresponding 

penalty. V_mrt is the number of violating the mrt 

constraint. P_mrt is its corresponding penalty. 

V_base2base is the number of violating the 

base2base constraint. P_base2base is its 

corresponding penalty. V_7d32hrs is the number of 

violating the 7d32hrs constraint. P_7d32hrs is its 

corresponding penalty. V_7d24hrs is the number of 

violating the 7d24hrs constraint. P_7d24hrs is its 

corresponding penalty. V_TimeDiff is the number 

of violating the TimeDiff constraint. P_TimeDiff is 

its corresponding penalty. V_LongFT is the number 

of violating the LongFT constraint. P_LongFT is its 

corresponding penalty. 

3. Problem Solution 
The GA is itself an evolutionary and interactive 

process. Through the optimal process generation by 

generation, the status of the seats available for a 

deadhead trip can be updated accordingly. To 

generate the other set of pairings for the other type 

of crews in a duty, the model can also consider the 

continuity of calculating the unoccupied seats in the 

same flight while generating the duty for different 

crew types. That is first, or t=1, to generate the 

pairing for the highest rank of pilot in all duties, i.e. 

the captain, and calculate the available seats for the 

next type of crew. The following step, or t=2, is for 

the other pilot of the two pilot duties, i.e. the first 

officer, and updating the number of available seats. 

Third, or t=3, is for the additional pilot of three pilot 

duties, i.e. the relief captain, and recounting the 

empty seats again. Finally, or t=4, is for the last 

pilot of the four pilot duties, i.e. the relief first 

officer. This indicates that the different rank of 

crews might have their different pairing. 

The following Algorithm 1 shows the flow of the 

genetic algorithm designed in this paper.  

Algorithm 1 Outline of Genetic Algorithm 

for all Tt ∈  do 

  0⇐g  

  ()tioninitPopulap ⇐  

  deadhead_quota_calc(P) 

  evaluate(P) 

  repeat 
    )(}2,1{ PSelectionpp ⇐  

    )2,1( ppCrossoverp ⇐′  

    )( pMutation ′  

    if deadlock occurs then 

        ),( onRatehighMutatipionCrossMutat ′  

    else 

        ),( nRatelowMutatiopionCrossMutat ′  

    end if 

    deadhead_quota_calc(p’) 

    evaluate(p’) 

    popReplacement(p’,P) 
    1+⇐ gg  

  until terminating condition 

end for 

It starts with the initialisation of the population. 

After the initialisation, the quota of the deadhead 

trip for current each crew type is calculated before 

the main operation of genetic algorithm. Then 

evaluating the population, selecting the better 

parents to crossover and breaking the local optima 
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by mutation. If the good fitness value is not 

improved for some generations, the cross-mutation 

will be applied by a higher possibility. The quota of 

the deadhead trip for current generation is calculated 

and evaluates the population. Finally the new 

generated chromosomes replace the old 

chromosomes. The algorithm stops until the score of 

the fitness function is not improved for another 1500 

generations. The following few sections describe 

more detail about the algorithm. 

3.1. Matrix Encoding Scheme 
In this paper a matrix representation is considered 

rather than an original string list representation from 

Holland [17], for the following three reasons. The 

first is the intuitive connection between a 

chromosome and a set of pairings. It can also 

maintain the solution space with the original 

problem. The third is that with the help of the 

powerful computing machine we can examine the 

legality of every chromosome very fast. This 

representation can also eliminate st.1 in eq. (1) by 

assigning all duties in the chromosome. For the 

deadhead trip consideration as st.1 in eq (2), if it is 

necessary it will be assigned as an attribute of the 

corresponding duty. This approach can reduce the 

search space of original problem. 
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Fig. 1 Matrix Encoding Scheme 

The encoding representation of a chromosome can 

be seen in Fig. 1. As depicted in this figure, the pα 

represents the αth pairing, dβ represents the βth 

duty in the duty list of a pairing and wαβ represents 

the identification number of theβth duty of pairing 

pα. The number of pairings, α, will be set as one 

and half times of the number of duties departed 

from the base. Fig. 2 illustrates all possible 

conditions in the chromosome. The number of 

duties in a pairing, β, is usually set to the largest 

number of duties that a pairing might contain. Every 

duty will be assigned a unique and sequentially 

ordered number for its identification. The flight-

covering problem in eq. (1) and eq. (2) will be 

changed to duty covering problem thereafter.  

3.2. Population Initialization 
Initialization is a process to generate the initial 

population, which allows the application of 

variation operators. A certain number (population 

size) of individuals, exhibiting equal or similar 

genome structures, is created either randomly or 

heuristically. However, in crew scheduling problem 

if the duties are assigned randomly, the minimum 

rest time between duties will always be the most 

difficult constraint to satisfy. To generate a feasible 

solution, the estimated longest rest time between 

duties will be assigned in the population 

initialization, as the following Algorithm 2. 

Algorithm 2 Initialization Procedure 

Require: affected duties set φ≠′D , individual s 

for all Dd ′∈  do 

  0⇐b  

  if d(departure airport) is base then 

    assign(d, b, 0) 

    }{dDD −′⇐′  

    1+⇐ bb  

  end if 

end for 

for all Dd ′∈  do 

  if d is not assigned then 

    for n=1 to ROW do 

      for m=1 to COL do 
        n_regulatiost_time_oflargest_rert ⇐  

        if d(dep. airport) is s[n][m-1](arr. airport) and 

           d(dep. time) > s[n][m-1](arr. time+rt) then 

           assign(d, n, m) 

        else 

           assign(d, n, 0) 

        end if 

       }{dDD −′⇐′  

      end for 

    end for 

  end if 

end for 

The first part of the Algorithm 2 is to assign all 

duties departed with the base, such as w11, wd1 and 

we1 in the Fig. 2. They all departed from the base, 

TPE, in this example. The second part is to find if 

the other duties can be the successors of the duties 
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assigned in the chromosome. Otherwise it will be 

assigned as a first duty of a new pairing, such as wf1 

and wg1 in Fig. 2. In Fig. 2, pairings from p1 to pd-1 

are called feasible pairings. Pairings from pd to ph-1 

are called unfeasible pairings. These pairings will be 

added the necessary deadhead trips to become 

feasible pairings. In addition, there are some 

pairings containing nothing, such as pairings from 

ph to pα.. 
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wij(dep,arr) indicates that 

the duty wij departs from 

dep airport to arr airport. 

w11(TPE,ANC) 

w12(ANC,ORD) 

w13(ORD,ANC) 

w14(ANC,TPE) 

wd1(TPE,DXB) 

wd2(DXB,LHR) 

we1(TPE,DXB) 

wf1(ANC,ORD) 

wf2(ORD,ANC) 

wf3(ANC,TPE) 

wg1(DXB,TPE) 

The other duties are null.  

Fig. 2 Example of initial solution  

3.3. Crossover Operators 
A simple crossover operator, the column-based 

crossover, implements this function. Its basic idea is 

to construct new offspring in a way that columns are 

selected randomly from the chosen parents. This is 

illustrated in Fig. 3. It operates as the well-known 

one point crossover.  
 Sequence number 

Parents 

Offspring 

P
airin

g
 

 

Fig. 3 One-point crossover operation 

3.4. Mutation Operators 
The intention of mutation operators is to avoid 

getting trapped in local optima through increasing 

the diversity of the population. As Branke [6] stated 

that this applies the idea of maintaining diversity 

throughout the run to tackle this dynamic problem. 

It usually modifies the resulting offspring slightly 

by changing only few values or varying a part of the 

individual. Here we introduce two mutation 

operators, which have been applied in our approach. 

Fig. 4 demonstrates the basic mutation operator. 

That is to select two cells randomly and swap their 

content.  
 

P
airin

g
 

Sequence number 

  

Fig. 4 Basic mutation operator 

In order to increase the opportunity of forming 

different styles of pairings, the second mutation 

operator, named as cross-mutation, exchanges two 

chromosomes based on a randomly selected number 

of duty id. This idea is actually coming from the 

string based crossover operation. However, if this 

operation is being triggered very often, then it will 

have a huge disturbance for the current solution. So 

it should be triggered as a mutation operation. A 

random number is selected between the smallest 

duty ID and the biggest duty ID. Then we exchange 

those duties with their ID larger than the random 

number as the illustration in the Fig. 5. The selected 

random number is 5 in this case. So the duties of 

parents with their ID being larger than 5 will be 

replaced by each other as depicted in Fig. 5. 
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Fig. 5. Illustration of cross-mutation 

This operation can make the number of pairing 

as small as enough by minimizing the deadhead 

trips. The operation rate of this method will be 

increased a bit if the score of the result has no 

improvement for 50 generations. 

3.5. Evaluation 
Normally, each individual’s fitness value calculated 
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by the evaluation procedure is a number expressing 

the quality of the solution. Generally speaking, one 

common way to calculated fitness value of an 

individual is to combine its cost and the penalty. 

The cost of an individual can be easily translated 

from the objective function of the given problem. 

However, it does not take infeasibility into account 

and individuals in the population are likely 

infeasible solutions, hence an appropriate penalty 

has to be incorporated into the evaluation process. 

Accordingly, the fitness function f(x) can be of the 

form, 

f(x) = c(x) + V(x)...............................................(5) 

where c(x) is the objective function and V(x) is a 

penalty function which is usually problem specific.  

3.6. Selection Method 
The selection of parents is the process that provides 

a change of reproduction to every individual in the 

population. As described earlier, some types of 

variation operators, such as crossovers, require two 

or more parents to produce new offspring. The 

quality of the resulting offspring may depend on its 

parents because most parts of the offspring are 

inherited from them. Because the variance among 

fitness values can be quite large, the risk that some 

individuals dominate the whole population after few 

generations must be taken into account. Hence, 

proportionate selection, roulette-wheel selection 

strategies, rather than strategies based on the 

absolute fitness value seem to be more applicable 

for this specific problem. The possibility that an 

individual is selected to do the reproduction is 

determined by the suggestion of Goldberg [15], 
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where POP is the total population number, fc is the 

fitness value of the chromosome in population and F 

is defined as ∑
=

=
POP

c
cfF

1

. 

3.7. Replacement Strategy 
In light of the evolution process, new offspring 

produced by the GA operators replace individuals in 

the population. The average fitness of the population 

then can be improved over generations. The 

replacement schemes adapted in this paper is close 

to generational replacement, defined originally by 

Holland [17]. The entire population is replaced 

except the best one in the population after a new 

population is generated. It indicates that the best 

solution in current generation is always the best one 

since the algorithm started. This will help the 

business operators who are not familiar to the kernel 

of problem solving for monitoring the process easily. 

3.8. The result 
This case is running by a personal computer with 

the Pentium-IV 2GHz CPU speed. The performance 

statistics of this four-stage dynamic problem is 

shown in Table 2. Normally in an international 

airline, there will be some long duties required the 

fourth pilot. However, the more pilots are assigned 

in the aircraft, the more cost of the airline will spend. 

In this case, due to the unstable sources of the cargo 

service, there is no fourth pilot in this month of test 

data. So there is no such data in Table 2. In the other 

side, the running time of the algorithm depends on 

the size of the problem. However, the characteristics 

of the routes will also have a very important 

influence on it. The number of flights in EUP area is 

larger than those in AMS area. So the problem with 

EUP data should be more complex than AMS 

theoretically. But the fact is almost on the contrary. 

The main reason is that the frequency of routes is 

rather different between two areas. In average, from 

Table 1 the frequency of the routes in AMS area is 

about one and half times higher than those in EUP 

area. So the solution space of the problem with EUP 

data is approximately 66% of the solution space of 

the problem with AMS data. In this way the 

variation of the destination is not as important as 

frequency. 

Table 2. The performance of the algorithm 

 Month August  

 Area AMS EUP 

Generations t=1 5892 6243 

 t=2 11615 3787 

 t=3 4699 3494 

 t=4 -- -- 

Running Time 

(hh:mm:ss) 
Total 2:29:30 1:47:31 

The cost indexes in Table 3 considered in this 

comparison are briefly described as follows.  
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1. PerDiem, which is calculated as the 

multiplication of its hourly unit price, HUP, and the 

time duration from the time of checking in, TI to the 

time of checking out, TO. It is defined as, 

∑∑
= =

•=
4

1 1p
tptp )]TI-TO( [HUPPerDiem

t

α

..............(7) 

2. Hotel cost, which is calculated as the 

multiplication of room rate, RoomRate, and number 

of nights, Night. The number of nights depends on 

the check in policy of every foreign contracted hotel. 

For example, if the pilot arrives before the time of 

checking in this hotel, then an extra night of a room 

is charged. It is defined as, 

∑ ∑
= =

•=
4

1 1p

][RoomRateH
t

tpNightotel
α

...................(8) 

3. Deadhead trip cost, which is the result of the 

multiplication of its number of usage in total crew 

pairings, NDHT, and its corresponding average 

sales price, CASP. It is defined as, 

∑∑
= =

•=
4

1 1p
tp ASP][NDHTipDeadheadTr

t

C
α

...........(9) 

4. Pay time cost, which is calculated as the 

multiplication of the accumulation of the flight time, 

FT, and half of the flight time of deadhead trips, 

FTD, in all pairings and its average hourly rate, 

AHR, of the corresponding crew type. It is defined 

as, 

∑ ∑
= =

+•=
4

1 1p
tptpt )]FTD

2

1
( [AHRPayTime

t

FT
α

...(10) 

5. Flight time, which is calculated as the 

multiplication of the accumulation of the flight time 

in all pairings and its average hourly rate of the 

corresponding crew type. It is defined as, 

∑ ∑
= =

•=
4

1t 1p
tpt ] [AHRFT

α

FT .................................(11) 

6. Man day, which is calculated as the multiplication 

of the average daily rate, ADR, of the corresponding 

crew type and the day duration from the day of 

checking in, DI, to the day of checking out, DO, for 

all pairings. It is defined as, 

∑∑
= =

+•=
4

1 1p
tptpt 1)]DI-DO([ADRManday

t

α

......(12) 

COM_Aug, the result of the algorithm in Table 3, 

is compared with an experienced schedule operator, 

as there is no existing software considering the 

dynamic factors. The MAN_Aug is the result of an 

experienced schedule operator using exactly the 

same data with the algorithm. He takes about 2 days 

to generate his result. 

Table 3. Cost comparison 

Item\source MAN_Aug COM_Aug 

PerDiem 5,358,427 5,513,227

Hotel cost 10,814,969 11,886,083

Deadhead trip cost 335,401 222,202

Pay Time cost 42,746,856 41,762,440

Flight Time cost 40,903,648 39,296,888

Man Day cost 33,733,356 34,091,508

Total Cost 133,892,656 132,772,352

Table 3 and Table 2 show that the algorithm is 

more advantageous either in the schedule cost or the 

performance of generating the schedules. It can save 

the cost approximately by 1.1 million NTD monthly. 

4. Conclusion 
The crew-pairing problem in the real world is either 

dynamic in a changeable environment or complex in 

the negotiable regulation. The traditional crew-

pairing problem can be said that it is the special case 

of the dynamic crew-pairing problem.  

In this paper, the number of unoccupied seats in 

a freighter cockpit makes the stationary crew-

pairing problem dynamic. It is hard to be solved by 

the traditional approach. Since it cannot be 

predetermined. A genetic algorithm for dealing with 

the dynamic cargo crew-pairing problem is 

developed. The special treatments in population 

initialisation and in mutation operator make this 

algorithm more efficient for finding an acceptable 

result. It has been tested for the data in the real 

world and compared their results with a senior 

scheduler. The result shows a tremendous advantage 

than the result by a scheduler. It can either save the 

cost approximately for 1.1 million NTD per month 

or the time in days. Thus, for solving this dynamic 

problem, this algorithm can also take every dynamic 

constraints and objective functions very well. Its 

architecture is very suitable for solving this kind of 

problem. 
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