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Abstract: - A mathematical model connecting the dynamics of the essential components in this process; the 
erythrocytes (RBC), the hormone erythropoietin (EPO) and the oxygen is proposed.    A time delay is included 
to simulate the dynamics of the maturation steps. A bifurcation analysis is performed to determine the ranges 
of parameter values. The effects of the time delay are seen in the simulated production of the erythrocytes as 
the delay time is increased past the critical value. 
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1 Introduction 
  Erythropoiesis is a three step process by which 
erythrocytes (red blood cells (RBC)) are developed.   
The main role of the RBC is to transport oxygen 
from the lungs to the tissues. The RBC’s also have a 
role in regulating the process itself. The main 
regulator of the production of RBC is the hormone, 
erythropoietin (EPO). The regulator of the EPO is 
the lack of oxygen.  The amount of oxygen reaching 
the kidney producing the EPO depends on the RBC 
in circulation. The production of RBC is controlled 
by a positive feedback loop involving the EPO.  The 
production of the EPO is controlled by a negative 
feedback loop involving the oxygen. The role of 
oxygen in the control of erythropoiesis is only now 
being recognized. 

In the first model of hematopoiesis, Mackey and 
Glass[1] used a single differential equation containing 
a time delay. Mackey et al., [2-5] extended the math-
ematical description of erythropoiesis by introducing 
an additional equation to describe the dynamics of the 
EPO.  They did not include a role for oxygen.  In this 
paper, we wish to study the effects of a time delay on 
our mathematical model for erythropoiesis which in-
cludes an explicit role for oxygen in the physiological 
control of erythropoiesis. 
 
 
2 Problem Formulation 

We are interested in real systems which are best 
represented by a mathematical model consisting of 
three nonlinear autonomous first order differential 
equations having both a positive and negative 
feedback control. Such a system is the process of 

erythropoiesis. In erythropoiesis, the production of 
the RBC should be small when the amount of EPO 
present is low.  When the amount of EPO is high, 
the production RBC should be high. The reverse 
holds for the control of EPO by the oxygen in the 
tissue.  The production of EPO should be high under 
hypoxia conditions (lack of oxygen). The amount of 
oxygen in the blood should be directly related to the 
number of RBC in the blood. 

Thus our model for erythropoiesis is described 
by the following equations 

11 βy
dx y x
dt

α µ= −
+

   (1) 

21
dy k y
dt k z

µ= −
+

   (2) 

and  zx
dt
dz

3µγ −=    (3) 

where x(t) is the amount of RBC; y(t), the amount of 
EPO; z(t), the amount of O2; 3,2,1, =iiµ , the 
removal rate of each variable by either death or 
clearance by the kidney/liver. We have denoted the 
net input rate for the variables RBC, EPO and O2 
asα , k andγ , respectively. 

There is a lag between the time the EPO acts on 
the pre-RBC and the time that the fully developed 
RBC emerges.  Eqn. (1) should be replaced by  
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The system described by eqns. (1) to (3) have two 
steady state (0,0,0) and ( ), ,s s sx y z . We consider 
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the case of the non washout steady state  given by  
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To proceed further, we perform an bifurcation 
analysis. We let sX x x= − , sY y y= − , and 

sZ z z= −  to  linearization in the system (1)-(3).  
In studying a time delay model, linearization of 

the system at its steady state will produce either a 
transcendental characteristic equation or an 
exponential polynomial equation. It is well known 
that the steady state is stable if all the eigenvalues of 
the exponential polynomial equation have negative 
real part, and is unstable if at least one root has a 
positive real part [13-14]. Thus a Hopf bifurcation 
occurs when the real part of a certain eigenvalue 
changes from negative to zero and to positive (i.e. 
the steady state changes from stability to instability).  
This is usually caused by the time delay. 
 The characteristic equation for the above 
system is 
  
 ( ) 3 2 0L a b c de λτλ λ λ λ −≡ + + + + =     (5) 
where  
       1 2 3a µ µ µ= + +         (6) 

  ( )1 2 1 2 3b µ µ µ µ µ= + +        (7) 

  1 3 2c µ µ µ=          (8) 
and   ( ) ( ) =  - s sd F y G zγ         (9) 
 
 We first look at eqn. (5) when 0τ = .We find by the 
Routh-Hurwitz condition [13] that all roots of eqn. 
(5) for 0τ =  will have negative real parts when 

0a > , 0c d+ >  and ab c d> + . The steady state 
( ), ,s s sx y z  will be asymptotically stable. 

For 0τ ≠ , we write the eigenvalues as ( )λ τ  
( ) ( )iα τ ω τ= + , where α  and ω  are functions of 

τ . Since the Hopf  bifurcation condition are satisfy-
ied for τ < τ0 , we will have ( )0iλ ω τ= .  Using the 
Lemma given in Khan and Greenhalgh [14], we can 
establish that the critical delay time 0τ  does indeed 
exist.  
 
 
3 Problem Solution 
 
3.1 Critical Delay 

The critical delay time 0 0τ >  is the value for 
minimum all the values of τ  for which ( ) 0.α τ =  

Letting iτ  be the value at which this occurs and set 
( )iω ω τ=  to be the value of the imaginary part of 

the eigenvalue at this time, we 
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3.2 Numerical Simulation 
  To determine the response of the production 
rate to EPO stimulation, we have carried out some 
experiments in the laboratory.  We grew stem cells 
taken from normal humans.  We then added small 
amounts of EPO to the growing stem cells and 
counted the number of erythrocytes being produced 
on the 7th, 10th, 12th, and 15th day.   Since we used 
only two concentrations of the EPO (2µ/ml and 0.2 
µ/ml) in our experimentation, we set α to be either 
2µU/ml and 0.2 µU/ml in our computer simulations.  
We found that the production rate (expressed in 
percentage) of erythrocytes due to the EPO 
stimulation to be in the range 0.5-1.55% in normal 
humans.  The details of these experiments will be 
published elsewhere. 
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Figure 1. Time Behaviors of the Concentrations of 
RBC, EPO and O2 Predicted by Eqns. (1) – (3)  
  
 The time behaviors of the three variables seen 
in Figure 1 were obtain by solving eqns. (1) to (3) 
using the following values; 0.2,α = 5,k = τ = 7,  
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x0 = y0 = z0 = 0.1, µ1 = 0.945, µ2 = 0.472, µ3 = 0.158, 
y =1.026, xs = 0.0849, ys = 0.0849, zs = 0.0849. As 
we see, the RBC’s, EPO’s and the O2 exhibit a 
damped oscillation into the steady state. 
  We now change the values of some of the 
parameters to α = 0.25, k = 3.033, µ1 = 1.1945, µ2 = 
1.1945, µ3 = 0.115 and γ = 0.8667.  These values have no 
significance and were chosen so that by changing the 
delay time, we get the simulated responses which show 
the different behaviors. Using the values given, the 
critical delay time is 3.624 days.  Setting τ = 3.624 days, 
we obtain a sustained oscillation (See Figure 2a).  
Changing τ = 2.95 days which is less than the critical 
delay time, we obtain an damped oscillation (See Figure 
2b) The diverging oscillation seen in Figure 2c, occurs 
when τ = 4.125 days.  In other words, we are seeing the 
change in behaviors as the time delay τ  increases for 

0 ,τ τ>  to 0 ,τ τ=  and then to 0 .τ τ<  

 
(2a). τ = 3.624 days 

 
(2b). τ = 2.95 days 

 
(2c). τ = 4.125 days 

 
Figure 2.  Time evolution of the erythrocytes 
number(x 1011) for three values of the delay time τ .  
 
 To better see the changes which arise when the 
tile delay is changed, we have plotted in Figure 3, 
the behaviors in the 2D RBC-EPO phase space.      
As is seen, the trajectory in Figure 3a, which is for 

0 ,τ τ= begins from the left side of the frame and 
enters into a close orbit about the steady state.  
According to the Hopf bifurcation theory, the orbit 
is a limit cycle, meaning that the trajectory will 
always enter into the closed orbit no matter where 
the trajectory starts. Figure 3b shows the trajectory  
when the delay time is 2.95 days which is less than 
the critical delay time. As we see, the trajectory  
 

 
(3a). τ = 3.624 days 
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(3b). τ = 2.95 days 

 
(3c). τ = 4.125 days 

 
Figure 3.  Trajectory of the solution in the 2D 
Erythrocyte-EPO phase space for the three values of 
the delay time.  
 
spirals into the steady state.  Figure 3c shows the 
rajectory when the delay time is 4.125 days.  Since 
the delay time is larger than the critical delay time, 
the trajectory is seen to spiral away from the steady 
state.    
 
4 Conclusion 

The reason for picking the delay time to be 
the bifurcation parameter is that several diseases 
such as the periodic hematological diseases are 
believed to be due to abnormalities in the feedback 
mechanisms which regulate the blood-cell number 
[2-7, 15-18].  In the absence of knowing how this is 
done in the bone marrow, we have introduce a time 

delay into the feedback loop in order to simulate the 
action of the unknown process taking placing in the 
bone marrow.   Using the numerical values of the 
parameters listed in section 3, the critical time delay 
and the steady state ( ), ,s s sx y z  are calculated to be 
3.624 days and for the system to undergo a Hopf 
bifurcation at the critical delay time.   
 In Figure 2, we see the time evolutions of the 
RBC in a typical human being for three time delays; 
3.624 days (2a), 2.95 days (2b) and 4.125 days (2c).  
These time delays correspond to 0 ,τ τ>  0τ τ=  
and 0 .τ τ< Fig. (2a), the oscillation is a sustained 
one while in the bottom left frame, Fig. (2b), we see 
that the amount of RBC in the human is a damped 
oscillation.  The sustained oscillations seen in Figure 
1a, looks very much like the sustain oscillations in 
the circulating erythrocytes of a rabbit suffering 
from autoimmune haemolytic anema [19]. The 
oscillation in the figure is also similar to those seen 
in cases of cyclic thrombocytopenia which resulted 
from thrombopoietin deficiency [17, 18].  Of course, 
the mathematical models yielding the oscillations 
for the last two medical problems would be 
different. In (2c) frame, we see the amplitude of the 
oscillation growing in the stage of the oscillation.  
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