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Abstract: - Iterative learning control methods are represented as powerful tools to control dynamics 
nowadays. Our new controller based on particular case of iterative learning control is radically 
different from the presented conventional method, which attempts to stabilize a class of nonlinear 
systems by satisfying the conditions of Lyapunov Stability Theorem. 
Since our algorithm is model based, its robustness should be considered respect to perturbation in the 
system structure and Lipschitz condition number. 
Depending on our designed method one shouldn’t worry in this paper about finding the Lyapunov 
function on the considered systems any longer. 
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1 Introduction 
Since the recent decade, the researchers have been 
focusing their efforts on learning control systems, as 
this kind of control technique is able to improve 
system performance efficiently. 
Many scientists working on Iterative Learning 
Control(ILC), have presented different learning 
control schems. Among these for tracking control ,is 
the iterative learning control which was originally 
introduced by “Arimoto” in1984. 
The main purpose of  ILC is to find a control input 
iterativly.resulting in the plant ability to track the 
given reference signal on output trajectory over a 
finite time intreval. 
Common ILC methods use the repetitive nature of 
the process to improve the tracking performance 
progressively[1][4][5][6].but from a new view point 
of ILC which is represented in this paper stabilizing 
a class of nonlinear systems would be obtained. 
In section 2 problem formulation is represnted. 
Section 3 presents our controller designed method. 
Sections 4 discusses our rusults by showing 
application of our algorithm on some dynamics. And 
finally conclusion is included in section 5. 

 
2   Problem Formulation 
Consider the system 

mRunRxutxgtxfx ∈∈×+= ,),(),(
.

 (1) 

Where nRDf →∞× ),0[: and mRDg →∞× ),0[:  are 
piecewise continuous in t, and f is locally Liptschitz 

in x on ),0[ ∞×D , nRD ⊂ is domain that contains 
the origin x=0. 
Supposing the system (1) is perturbed as below: 

Ugtxgftxfx ×Δ++Δ+= )),(()),((
.

        (2) 
 
The perturbation could be resulted from modeling, 
aging, or uncertainties and disturbances which exist 
in any realistic problem. In a typical situation, 
though perturbation is not known, but some 
information like knowing an upper bound is 
available. Here the perturbation is represented as an 
additive term on right-hand side of the state 
equation. Uncertainties which don’t change the 
system order can always be represented in this form. 
In general if a perturbation is considered as ),( txhΔ , 
it can be classified in two types as below :  

0),( =txh  is vanishing perturbation , and 
0),( ≠txh called nonvanishing perturbation. 

In this paper, vanishing perturbation has been 
investigated for g function whereas f perturbation is 
considered to be Lipschitz. 
It is necessary to fulfill these four assumptions: 
1. g perturbation is vanishing; 0),0( =Δ tg , and its 
upper bound is known as δ<Δ ),( txg  
2. f is piecewise continuous in time, and locally 

Liptschitz in nRDD ⊂∞× ,),0[ , in  state 
xMtftxf ≤− ),0(),(  

3. f(0,t)=0 ; x=0 is an equilibrium point of the 
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unperturbed system. 
4. f purturbation, ),( txfΔ , satisfies the lipschitz 
condition. 
 
 
3   Controller Design Method 
 
For a closed loop system, state space equation is 
given by (1), Usually stabilization of the closed loop 
system can be prepared by a suitable controller 
u(x,t) as a function of state x and time t. 
For such a system in relation (1) by the theorem 
discussed below, we claim that a stabilizer as form 
of feedback control and a Lyapunof Function for 
stabilizing the system are found. 
 
 THEOREM: 

 
Consider the closed loop system (3) with the 
following controller: 
 

xku =                 (3) 
 
Where K is the matrix which governed by the 
following law: 
 

dQktxgIM =×+× ),(                            (4) 
 
where M is bound of lipschitz condition, I is unit 
matrix with the proper dimension, and dQ is a 
desired negative difinite matrix which is selected by 
the designer based on the rate of  descending the 
Lyapunov criterion.  
Then (3) will be asymptotically stable around the 
origin. 
 
PROOF: 
 
By defining the Lyapunov function, as below and 
following the proof procedure, a quoted controller 
will be derived as follow: 
 

xTxV
2
1=

..
xTxV =⇒  

)),(),(),((
.

txutxgtxfTxV ×+=  

),(),(),(
.

txutxgTxtxfTxV ×+=  
 
By using the Schwartz Inequality  we have: 
 

fxfxfxT ≤><= ,  
 

and by implementing the lipschitz condition it 
changes to: 
 

MIxxxMxfxfxfx TT =≤≤><= ,
 
 
Now by selecting the controller as u=Kx, the below 
relation is achieved: 
 

xgKMITxxgKTxxMITxV )(
.

+=+≤  
 

Therfore the desired negative definite matrix 
dQ  is 

considered as: 
 

dQktxgIM =×+× ),(  
 
Since the K matrix can be obtained from the 
following cases as below: 
 
Case1. g is invertible matrix. In this case K is 
obtained simply by the following relation (test 6): 
 

)(1 IMQgK d ×−= −
 

 
Case 2. g is pseudo-invertible matrix. Here K can be 
expressed by (test 7): 
 

)()( 1 IMQgggK dTT ×−= −  
 
Our algorithm is also reliable for the system (1) in 
which inputs and outputs numbers are different. 
If g(x,t) is not invertible or pseudo-invertible, it 
means that the inputs are interaction together and the 
system has contorolability problem, in this case the 
mentioned ILC method is more effective.  

 
COROLLARY:  in general case, g  has been mn ×  
dimention ( whre n is the number of states and m is 
the number of inputs): in this case Iterative Learnig 

Control can be used to find the desired nmK ×  matrix 
which satisfy the relation (5) by the following 
method (test 1) : 
 

iii eKK Δ+=+ η1
 

 
where i represents the iteration index and nm×η  is 
the learning factor matrix . 
 

idi QQe −=Δ  where 
ii gKIMQ +×=  

 

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp471-476)



111 +++ −×−=−=Δ ididi gKIMQQQe  
)( iid eKgIMQ Δ+−×−= η  

iid eggKIMQ Δ−+×−= η)(  
i

nn
iid egIegQQ Δ−=Δ−−= × )()( ηη  

 
i

nn
i egIe Δ−≤Δ ×
+ η1 the convergence 

condition now is obtained : 
 

1max ≤−× gI nn η  
 
It should be considered that this type of control is 
used when the system and the controller have 
different rate of processing time, meaning that the 
desired controller works much faster than the 
process possibly by using new high-rate software 
nowadays. 
 
Remark 1: Robustness Respect to Perturbation 
in f and g Functions 
 
Considere f and g are perturbed by fΔ and 

gΔ terms. Suppose the perturbation of fΔ is 
vanishing which satisfies the linear growth bound: 

Dxtxtxf ∈∀≥∀<Δ ,0),( γ  where γ  is 
nonnegative constant. Also for g perturbation, it is 
supposed that its upper bound is known, therefore it 
can be written as: 

Dxttxg ∈∀≥∀<Δ ,0),( δ  where δ  is a positive 
number. 
By these assumptions, fff Δ+=′  would remain 
Lipschitz and according to mentioned theorem K 
matrix can be obtained from the new relation below: 
 

 
d

nn QkgtxgIM =×Δ++×+ × )),(()( γ  
dd

nn QKgQKtxgIM =×Δ−=×+×+ × ),()( γ  
 
In this new case,(besides the perturbation in the 
system) it seams that the desired selected dQ matrix 
has been changed to dQ matrix, where 

KgQQ dd ×Δ−= , in designing dQ it should be 
noticed that it must be negative enough so that 
besides additive Kg ×Δ− term, dQ  would still 
remain negative (test 5). And the convergence 
condition of the mentioned ILC method in the new 
case can be achieved as: 

1

)(

≤+−≤

Δ+−≤

Δ+−=′−

×

×

××

ηδη
ηη

ηη

gI

ggI

ggIgI

nn

nn

nnnn

 
 

          ηδη −≤−× 1)max( gI nn  
 
Remark 2: Robustness Respect to Lipschitz 
Condition Number  
 
Although our designed controller is derived 
according to relations (3) , (4) and the Lipschitz 
condition number is important in this process, if the 
designer select this number incorrectly such as 
M ′ in the below relation: 

MMM Δ+=′  
This method is still reliable if M ′ is laid in the 
below range (test 4): 
 

)},
),(

[sup{ ∞∈′
x

txf
M

 
 
Remark 3: Selecting the Desired Matrix dQ  
Choosing the dQ  matrix affects the performance of 
the response. In other word, dQ  is appeared in the 
derivative of Lyapunov function and if it is selected 
larger ( in the sence of negative definite matrices) it 
means that the derivative of Lyapunov function 
would be more negative and it forces the above 
mentioned function to reach the origin more faster 
and vice versa (test 2). 
 
Remark 4: Forgetting Factor 
 
Forgetting factor enables the designer to control the 
speed of the response during the process of the 
system. 
According to previuos remark, by selecting dQ  
matrix at the beginning of the process, the designer 
can perform the mentiond task only once,but by 
using forgetting factor as term of 

)/exp(1 Tt−− (where t represents the time and T is 
the total time of process) the rate of descending the 
Lyapunov function can be adjusted, so the speed of 
states to reach the origin is controllable during the 
process (test 3). 
 
Remark 5: Sliding Surface 
 
In view point of sliding mode control, the sliding 
surface is known as a special case of lyapunov 
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surface. By using our algorithm one can claim that 
has found a sliding surface. Consider the following 
relations: 
 

T
nin xxXcccCCXY ],...[,0],...,[, 11 =≠==

 
where Ci’s are selected in such a way that CX would 
be hurwitz. 
By defining the Lyapunov function and following 
the procedure below we will have: 
 

CgKTCCMITCdQ

XCgKTCCMITCTXCgKXTCTXCMXTCTXV

CguTCTXCfTCTXgufCTCTXV

XCTCTXCXTCXYTYVYTYV

+=

+=+≤

+=+=

=′==⇒=

;)(

)(

)()(
2

1

&

&

&&&

 
by adjusting K matrix we make V& to be negative 
then based on the Lyapunov theorem Y moves to the 

origin and 0⎯→⎯CX so,  
0)1(...)1(

210...11 =−++=++ nxncxcxcornxncxc

 
because of Y is Hurwitz, then all of the states moves 
to origin. In this case S=CX is called sliding surface 
which has been claimed to find by our method. 
 
 
4   Experimental Results 
Now the results of our designed method are 
illustrated in nonlinear systems with our problem 
formulation for each section separately. 
 
Test 1- g is rectangular (ILC method)  
 
Consider the system with the following state 
equations: 
 

[ ]

.
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It should be noticed that the g matrix is rectangular 
(it means that the number of input and output are 
different). Now the results for controlling this 
system by our designed method are plotted as 

below: 
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Fig 1- ILC method- the states and controllers 

 

Test 2- selecting the desired dQ matrix 
 

In the above mentioned system the Q matrix is 
changed and the results are shown as follow: 
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Fig 2- Effect of the desired Qd matix- the states 
and controllers 
 

Now compare the amplitude of the controller and 
the speed of convergence for states and the 
controller in test 1 and test 2 

 
Test 3- forgetting factor 
The forgetting factor and Its effect is illustrated in 
the following manner: 
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A-Without forgetting factor: 
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B-With forgetting factor: 
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Fig 3- Effect of the forgetting factor- A without and B with forgetting 

factor-the states and controllers 
 
It is obvious that the rate of convergence is different 
in both cases shown above. 
 
Test 4- Robustness Respect to Lipschitz Conditon 
 
In this case the lipschitz condition number has 
reduced to half of its value comparing to test 1. the 
plots entirely show the difference in two considered 
cases. 
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Other experiment shows that this number has been 
increased to ten times larger than its value in test 1. 
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Fig 4- Lipschitz condition number robustness-the states and controllers 
 
Test 5- Robustness Respect to perturbation in f and g  
 
In this experiment f and g are changed by f+5*rand 
and g+2*rand  respectively.The results are shown as 
below: 
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Fig 5- robustness respect to f and g perturbation-the states and 
controllers 

 
Test 6- g is invertible matrix 
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According to the mentioned theorem discussed 
previously (case 1) the results for the following 
system achived as below: 
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Fig 6- g matrix is invertible-the states and controllers 

 
Test 7- g is pseudo-invertible matrix 
 
In this test, the same system and similar initial 
condition as in test 1 are considered. The results are 
shown and the comparison between the controller’s 
amplitutes are considerable. 
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Fig 6- g matrix is pseudo-invertible-the states and 

controllers 
 
5   Conclusion 
One of the main problem in any nonlinear system is 
to satisfy the stability of these systems and the 
Lyapunov stability Theorem is the most powreful 
method to achieve this purpose but the chief 
worrying matter in this theorem is to find a proper 
Lyapunov function. 
In this paper, from a new view point of ILC and 
using a well-known Lyaponov function and our 
represented method, this problem has been solved 
and the stability for such systems are obtained. 
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