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Abstract: A few Karush-Kuhn-Tucker type of sufficient optimality conditions are given in this paper for non-
smooth continuous-time nonlinear multi-objective optimization problems in the Banach space I, [0, T'] of all
n-dimensional vector-valued Lebesgue measurable functions which are essentially bounded, using Clarke regu-
larity and generalized convexity. Further, we establish duality theorems for Wolfe and Mond-Weir types of dual
problems under the assumptions of invexity, pseudo-invexity and quasi-invexity on the functions involved.
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1 Introduction

The relationship between mathematical programming
and classical calculus of variation was explored and
extended by Hanson [2]. Optimality conditions and
duality results are obtained for scalar valued varia
tional problems in Mond and Hanson [4] under con-
vexity. Mishra and Mukherjee [3] extended the work
of Mond et al. [5] for multiobjective variational prob-
lems. For other works on variational problems, one
can see[6, 7]. However, very few work has been done
on the kind of variational problems is considered in
this paper, see for example [6, 7]. In this paper, we
develop sufficiency and duality results for nonsmooth
continuous-time optimization problems under suitable
invexity assumption.

2 Problem Formulation

Consider the following continuous-time nonlin-
ear multi-objective programming problem for short
(CNMP):

Min ¢ (x) =

T T
(({ fi(t, z(t)) dt,...,offp (t, x (t)) dt)

subject to
gj(t,xz(t)) <0aein [0, T],

jedJ=A{1,..,m}, z e X,

whereX is an open, nonempty convex subset of the
Banach space L7 [0, T'] of all n-dimensional vector-

valued Lebesgue measurable functions, which are es-
sentially bounded, defined on the compact interval
[0, T] C R,withthe norm ||-|| . defined by

= <t <
|z o 11;1]%)(71 ess sup{ |zg (t)| , 0<t < T},

where for each t € [0, T, zy (t) is the k" compo-
nentof = (t) € R", ¢isarea-valued function defined
on X, g(t,z(t) = v@)z(t), and f(t,z(t) =
I’ (x) (t) ,where v is a map from X into the normed
space A" [0, T of all Lebesgue measurable essen-
tially bounded m-dimensional vector functions de-
fined on [0, 7] ,with the norm ||-||, defined by

T
ol = max [ lye (0)]dt
0

1<k<m

and Tis a map from Xinto the normed space
AYo, T7.

Let Z beaBanach spaceand ¢ : 7 — R bea
locally Lipschitz function; i.e., for each x € Z there
exist e > Oand aconstant K > 0,depending on &,such
that

|9 (71) = ¢ (22)| < K ||21 — 22| V21,22 € +6B,

where Bis the open unit ball of Z.

The Clarke generalized directional derivative of ¢
at xin the direction of agiven

v € Z,denoted by ¢° (x;v) ,is defined by
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. ; .

Yy+sv)=v(y)

S

V0 (z5v) =

lim sup
y—x
s— 0T

The Clarke generdized gradient of ¢ at x, de-
noted by 0v (x) , is defined by

o (z) = {ge Z* 1 (€, ) < ¥° (z;0) vVez} .

Here, Z*denotes the dual space of continuous lin-
ear functionalson Z,and (-,-) : Z* x Z — R isthe
duality pairing. Please refer to [1] for more details.

Let Q2 be the set of all feasible solutions to (CNP),
i.e.,

O={recX:gjtxz(t) <0aein0,T], jeJ} .

Assume that €2 is non-empty. Let V'be an open
convex subset of R"*containing the set

{x(t)e R":2 € Q,t€[0,T]}.

Let f; and g;,i € I,j € J are real functions
defined on [0, T'] x V. Function t — f; (¢t,x (t)) is
assumed to be Lebesgue measurable and integrable
for dl + € X. Assume that, given a € V. there
exist an ¢ > 0 and a positive humber k£ such that
vVt € [0, T], andVz1,22 € a + ¢B(B denotes the
unit ball of R™) we have

|fz (taxl) -

Similar hypothesis are assumed for g;, 7 € J.
Hence, f; (t, -) and g; (¢, -), i € I,j € Jarelocaly
Lipschitz on Vthroughout [0, T7] .

Assumez € Xand h € L7 [0, T| aregiven. The
continuous Clarke generalized directional derivatives
of f; and g;s are given by

fi (t,$2)| <k ||.T1 —$2H ,Viel.

£t 2(8); h(t) = T7(z: h)(1)
P (y+5h)(0)-TO ) (0

= limsup
y— 7
s — 0T
and

o) (t, z(t); h(t)) = ?(9«“ h)(t)
— limsup Vi (y+ ) %O
y—x
s — 0T

It follows easily from the above assumptions that
t— 062 (0):h (1)t — g2 (L2 (t);h (1), i €
1,5 € J are Lebesgue measurable and integrable for
adlz € Xand h € L% [0, T]. Let Ube a nonempty
subset of Zand ¢y : U — Rbe alocally Lipschitz
function on U. We introduce the following two duals
to the problem (CNMP).

3 Wolfe Dual (WCMD)

Max ¢ (u) =
T

(/ fi(t,u(t
0

T
[ U (tu®) + A0 (tu <t>>]dt>
0

A(t) g (t,u(t)))de, ...,

subject to

(O (tu(t);h(t)+

=1

T
0
m

> N (1) g5 (tu(t); h(t))] dt vh e Lg, [0, 17,
j=1

A(t) >0, ae in [0, T7,

p
i(t)>1,1<i<p, Y m=1,
i=1

u e X.

Let W, denote the set of all feasible solutions of
(WCMD).

4 Mond-Weir Dual (MWCMD)

T
Max ¢ (u (/ﬁ (t,u( /fp(t,u(t))dt)
0
subject to
T
0< T u(t);h(t
_O/ > nf! tu(®)sh (0) +
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S0 (860 (hu(t);h (8) | dtvh € L [0, T1,
j=1
A(t)g(t,u(t)) >0, aein [0, T]

A(t) >0, aein [0, T,

p
i(t)>1,1<i<p, Y m=1,
=1

u e X.

Let W5 denote the set of all feasible solutions of
(MWCMD). Problems (WCMD) and (MWCMD) are
the Wolfe type and Mond-Weir type of dual problems
of (CNMP), respectively.

5 Problem Solution

In this section, we present a few sufficient conditions
for afeasible solution to be an efficient solution (or a
weakly efficient solution) to (CNMP).

THEOREM 1. Let z € €.Suppose that
fi(t, -) andg; (¢, -) arestrictly invex at z (t)(with re-
spect to V') throughout [0, 7] for eachi € T and j €
Jwith the same n (z (t), z (t)). Suppose further

that there exist 0 < ﬂz (O (tu(t);h(t) +
0 Li=1

S0 (0 g (Lu(t)sh (D) | devh e Lm0, T),

j=1

and \ € L™ [0, T such that

Rl

t) >0, A(t) > 0a.e.in|0, T],

(7(t), A(t)) #0a.e.in(0, T,

Ajgi (t,Z(t)) =0a.e.in(0, T],j € J.

Then z isaweakly efficient solution for (CNMP).

fi(t, -) are pseudo-invex and g; (¢, -) are quasi-
invex a z(t)(with respect to V) throughout
[0, T] for each ¢« € [Iandj € Jwith the
same n (z(t), z(t)). Furthermore, suppose that

there ezt 0 < [[$5m (077 () (1) +
i}

=1

3 A (8) 69 (1 (8) 3 (1)
p2
and \ € L™ [0, T such that

T
o< |
0

,72”31 Aj (1) g3 (t,7 (1) 5 h(t))] dtVh € L5, [0, T,
iz

dtvh € L0, T),

S AL (T (0 1)+

=1

7(t) >0, A(t) > 0a.e.in0, T],

Ajgi (t,Z(t)) =0a.e.in(0, T],j € J.

Then z isan efficient solution for (CNMP).

Assume that the Clarke regularity holdsin the se-
quel of this section. We define the Lagrangian func-
tion L : X x L2 [0, T] x L2 [0, T] — R by

T p
L) - [z () (1 (6)+
o Li=1

1=

jﬁ”:l A (1) g (t, (t))] dt.

Let L, (Z,7,\;h) denote the usua direc-
tional derivative of L (-,7,\) a z in the direction
h € Lgo [07 T] 7and let axL (-TyT, A) denote the
Clarke generalized gradient of L (-, 7, A).

THEOREM 3. Let z € Q. Suppose that
fi(t, ) andg; (¢, -) arestrictly invex at z (t)(with re-
spect to V') throughout [0, 7] for eachi € T and j €
Jwiththesamen (x (t) , z (t)) for al functions. Sup-
pose further that there exist 7 € IE [0, T\ €
L7 [0, T such that

0 € 9.L (7, Mo, A,

7—-(t) >0, S\(t) >0a.e. in[O, T]v

(7(t), A(t)) #0a.e.in0, T],



Proceedings of the 9th WSEAS International Conference on Appliedqg\/%atyegatifs,)lstanbul, Turkey, May 27-29, 2006 (pp367-371)
z) ~o(u).

Ajgi (t,Z(t)) =0a.e.in(0, T],j € J.
Then z isaweakly efficient solution for (CNMP).

THEOREM 4. Let z € .Suppose that
fi (t, -) arepseudo-invex and g; (t, -) are quasi-invex
at = (t)(with respect to V') throughout [0, 7] for each
i € I'andj € Jwiththesamen (z (t), = (t)). Sup-
pose further that there exist 7 € £ [0, T] and A €
L7 [0, T]such that

0€d,L(z,7,7),

7(t) >0, A(t) > 0a.e.in0, T],

Ajgi (t,Z(t)) =0a.e.in(0, T],j € J.
Then z isan efficient solution for (CNMP).

The next two results extend the Propositions 4.3
and 4.4 of Rojas-Medar et al. [6].

THEOREM 5. Let z € Q. Suppose that
fi (t, -) arepseudo-invex and g; (t, -) are quasi-invex
at z (t)(with respect to V') throughout [0, 7] for each
i € ITandj € Jwith the same 7 (x (t), z(t)). If
there exist 7 € L2 [0, 7] and A € L7 [0, T]such
that

0€d.L(z,7 N\

7—-(t) >0, S\(t) >0a.e. in[O, T]v

Aigj (t,z(t)) =0a.e.in[0, T],5 € J.
Then z is an efficient solution for (CNMP).

THEOREM 6. Let z € Q.Suppose that ¢ ( -)are
pseudo-invex and - \; (¢) g;(t,Z(t))dt are quasi-
=1

invex at z (t)(with respect to V') throughout [0, 7] for
eachi € ITandj € Jwith thesamen (z (t), Z (t)).
If thereexist 7 € L2 [0, T and A € L [0, T7, such
that (z, 7, \) satisfies (21)-(23). Then z isan efficient
solution for (CNMP).

THEOREM 7 (Weak Duality). Assume that for
al z € Qand for dl (u,7,\) € Wi, and f; (-) and
A(t) g (-)are invex with respect to the same 7. Then,

THEOREM 8 (Weak Duality). Assume that
foral z € Q and for dl (u,7,\) € Wa, 7,f; () are
pseudo-invex and A; (t) g; (-) are quasi-invex with
respect to the same . Then, ¢ (z) K (u).

THEOREM 9 (Strong Duality). Letx*be an ef-
ficient solution for WCMD) and f (¢,-) and g (¢, -)be
uniformly Lipschitz. If the constraint qualification
holds at z*, then there exist \ such that (z*,)\) is
feasible for (WCMD). Moreover, if the weak duality
Theorem 1 holds, then (z*, ) iséfficient to (WCMD).

THEOREM 10 (Strong Duality). Letz*be
an efficient solution for (MWCMD) and
f(t,-) and g (t,-)be uniformly Lipschitz. If the
constraint qualification holds at z*, then there exist
A such that (z*,\) is feasible for (MWCMD).
Moreover, if the weak duality Theorem 2 holds, then
(z*, \) is efficient to (MWCMD).

6 Conclusion

We considered a nonsmooth continuous-time prob-
lem similar to the one considered in [6] and establish
Kuhn-Tucker type sufficint optimality conditions and
duality theorems for Wolfe aswell as Mond-Weir type
of dual modelsfor the problem under suitable invexity
assumption.
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