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Abstract: A few Karush-Kuhn-Tucker type of sufficient optimality conditions are given in this paper for non-
smooth continuous-time nonlinear multi-objective optimization problems in the Banach space Ln∞ [0, T ] of all
n-dimensional vector-valued Lebesgue measurable functions which are essentially bounded, using Clarke regu-
larity and generalized convexity. Further, we establish duality theorems for Wolfe and Mond-Weir types of dual
problems under the assumptions of invexity, pseudo-invexity and quasi-invexity on the functions involved.
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1 Introduction
The relationship between mathematical programming
and classical calculus of variation was explored and
extended by Hanson [2]. Optimality conditions and
duality results are obtained for scalar valued varia-
tional problems in Mond and Hanson [4] under con-
vexity. Mishra and Mukherjee [3] extended the work
of Mond et al. [5] for multiobjective variational prob-
lems. For other works on variational problems, one
can see [6, 7]. However, very few work has been done
on the kind of variational problems is considered in
this paper, see for example [6, 7]. In this paper, we
develop sufficiency and duality results for nonsmooth
continuous-time optimization problems under suitable
invexity assumption.

2 Problem Formulation
Consider the following continuous-time nonlin-
ear multi-objective programming problem for short
(CNMP):

Min φ (x) =(
T∫
0
f1 (t, x (t)) dt, ...,

T∫
0
fp (t, x (t)) dt

)

subject to
gj (t, x (t)) ≤ 0 a. e. in [0, T ] ,

j ∈ J = {1, ...,m} , x ∈ X,

whereX is an open, nonempty convex subset of the
Banach space Ln∞ [0, T ] of all n-dimensional vector-

valued Lebesgue measurable functions, which are es-
sentially bounded, defined on the compact interval
[0, T ] ⊂ R,with the norm ‖·‖∞defined by

‖x‖∞ = max
1≤k≤n

ess sup { |xk (t)| , 0 ≤ t ≤ T} ,

where for each t ∈ [0, T ] , xk (t) is the kth compo-
nent of x (t) ∈ Rn, φ is a real-valued function defined
on X, g (t, x (t)) = γ (t)x (t) , and f (t, x (t)) =
Γ (x) (t) ,where γ is a map from X into the normed
space Λm

1 [0, T ] of all Lebesgue measurable essen-
tially bounded m-dimensional vector functions de-
fined on [0, T ] ,with the norm ‖·‖1 defined by

‖x‖1 = max
1≤k≤m

T∫
0

|yk (t)| dt ,

and Γis a map from Xinto the normed space
Λp

1 [0, T ] .
Let Z be a Banach space and ψ : Z → R be a

locally Lipschitz function; i.e., for each x ∈ Z,there
exist ε > 0and a constant K > 0,depending on ε,such
that

|ψ (x1) − ψ (x2)| ≤ K ‖x1 − x2‖ ∀x1, x2 ∈ x+εB,

where Bis the open unit ball of Z.
The Clarke generalized directional derivative of ψ

at xin the direction of a given
v ∈ Z,denoted by ψ0 (x; v) ,is defined by
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ψ0 (x; v) = lim sup
y → x
s→ 0+

ψ (y + sv) − ψ (y)
s

.

The Clarke generalized gradient of ψ at x, de-
noted by ∂ψ (x) , is defined by

∂ψ (x) =
{
ξ ∈ Z∗ : 〈ξ, v〉 ≤ ψ0 (x; v) ∀v ∈ Z

}
.

Here, Z∗denotes the dual space of continuous lin-
ear functionals on Z,and 〈·, ·〉 : Z∗ × Z → R is the
duality pairing. Please refer to [1] for more details.

Let Ω be the set of all feasible solutions to (CNP),
i.e.,

Ω = {x ∈ X : gj (t, x (t)) ≤ 0 a.e. in [0, T ] , j ∈ J} .

Assume that Ω is non-empty. Let V be an open
convex subset of Rncontaining the set

{x (t) ∈ Rn : x ∈ Ω, t ∈ [0, T ]} .
Let fi and gj , i ∈ I, j ∈ J are real functions

defined on [0, T ] × V. Function t → fi (t, x (t)) is
assumed to be Lebesgue measurable and integrable
for all x ∈ X. Assume that, given a ∈ V,there
exist an ε > 0 and a positive number k such that
∀t ∈ [0, T ] , and ∀x1, x2 ∈ a + εB(B denotes the
unit ball of Rn) we have

|fi (t, x1) − fi (t, x2)| ≤ k ‖x1 − x2‖ , ∀i ∈ I.

Similar hypothesis are assumed for gj , j ∈ J.
Hence, fi (t, ·) and gj (t, ·) , i ∈ I, j ∈ Jare locally
Lipschitz on V throughout [0, T ] .

Assume x̄ ∈ Xand h ∈ Ln∞ [0, T ] are given. The
continuous Clarke generalized directional derivatives
of fi and g′js are given by

f0i (t, x̄(t);h(t)) = Γ0
i (x̄;h)(t)

= limsup
y → x̄
s→ 0+

Γ0
i (y+sh)(t)−Γ0

i (y)(t)
s

and

g0
j (t, x̄(t);h(t)) = γ0

j (x̄;h)(t)

= limsup
y → x̄
s→ 0+

γj(y+sh)(t)−γj(y)(t)

s

a.e. in [0, T ] .
It follows easily from the above assumptions that

t → f0
i (t, x̄ (t) ;h (t)) , t → g0

j (t, x̄ (t) ;h (t)) , i ∈
I, j ∈ J are Lebesgue measurable and integrable for
all x̄ ∈ Xand h ∈ Ln∞ [0, T ]. Let Ube a nonempty
subset of Zand ψ : U → Rbe a locally Lipschitz
function on U . We introduce the following two duals
to the problem (CNMP).

3 Wolfe Dual (WCMD)

Max ϕ (u) =⎛
⎝ T∫

0

[f1 (t, u (t)) + λ (t) g (t, u (t))]dt, ...,

T∫
0

[fp (t, u (t)) + λ (t) g (t, u (t))]dt

⎞
⎠

subject to

0 ≤
T∫

0

[ p∑
i=1

τi (t)f0
i (t, u (t) ;h (t))+

m∑
j=1

λj (t) g0
j (t, u (t) ;h (t))

]
dt ∀h ∈ Ln∞ [0, T ] ,

λ (t) ≥ 0, a.e. in [0, T ] ,

τi (t) ≥ 1, 1 ≤ i ≤ p,
p∑

i=1

τi = 1,

u ∈ X.

Let W1 denote the set of all feasible solutions of
(WCMD).

4 Mond-Weir Dual (MWCMD)

Max ψ (u) =

⎛
⎝ T∫

0

f1 (t, u (t)) dt, ...,
T∫

0

fp (t, u (t)) dt

⎞
⎠

subject to

0 ≤
T∫

0

[ p∑
i=1

τif
0
i (t, u (t) ;h (t))+
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m∑
j=1

λj (t) g0
j (t, u (t) ;h (t))

]
dt ∀h ∈ Ln∞ [0, T ] ,

λ (t) g (t, u (t)) ≥ 0, a.e. in [0, T ]

λ (t) ≥ 0, a.e. in [0, T ] ,

τi (t) ≥ 1, 1 ≤ i ≤ p,
p∑

i=1

τi = 1,

u ∈ X.

Let W2 denote the set of all feasible solutions of
(MWCMD). Problems (WCMD) and (MWCMD) are
the Wolfe type and Mond-Weir type of dual problems
of (CNMP), respectively.

5 Problem Solution
In this section, we present a few sufficient conditions
for a feasible solution to be an efficient solution (or a
weakly efficient solution) to (CNMP).

THEOREM 1. Let x̄ ∈ Ω.Suppose that
fi (t, ·) and gj (t, ·) are strictly invex at x̄ (t)(with re-
spect to V ) throughout [0, T ] for each i ∈ I and j ∈
Jwith the same η (x (t) , x̄ (t)). Suppose further

that there exist 0 ≤
T∫
0

[ p∑
i=1

τi (t)f0
i (t, u (t) ;h (t)) +

m∑
j=1

λj (t) g0
j (t, u (t) ;h (t))

]
dt ∀h ∈ Ln∞ [0, T ] ,

and λ̄ ∈ Lm∞ [0, T ] such that

0 ≤
T∫

0

[ p∑
i=1

τ̄if
0
i (t, x̄ (t) ;h (t))

+
m∑

j=1
λ̄j (t) g0

j (t, x̄ (t) ;h (t))

]
dt ∀h ∈ Ln∞ [0, T ] ,

τ̄ (t) ≥ 0, λ̄ (t) ≥ 0 a.e. in [0, T ] ,

(
τ̄ (t) , λ̄ (t)

) 
= 0 a.e. in [0, T ] ,

λ̄jgj (t, x̄ (t)) = 0 a.e. in [0, T ] , j ∈ J.

Then x̄ is a weakly efficient solution for (CNMP).

THEOREM 2. Let x̄ ∈ Ω.Suppose that
fi (t, ·) are pseudo-invex and gj (t, ·) are quasi-
invex at x̄ (t)(with respect to V ) throughout
[0, T ] for each i ∈ I and j ∈ Jwith the
same η (x (t) , x̄ (t)). Furthermore, suppose that

there exist 0 ≤
T∫
0

[ p∑
i=1

τi (t)f0
i (t, u (t) ;h (t)) +

m∑
j=1

λj (t) g0
j (t, u (t) ;h (t))

]
dt ∀h ∈ Ln∞ [0, T ] ,

and λ̄ ∈ Lm∞ [0, T ] such that

0 ≤
T∫

0

[ p∑
i=1

τ̄if
0
i (t, x̄ (t) ;h (t))+

m∑
j=1

λ̄j (t) g0
j (t, x̄ (t) ;h (t))

]
dt ∀h ∈ Ln∞ [0, T ] ,

τ̄ (t) ≥ 0, λ̄ (t) ≥ 0 a.e. in [0, T ] ,

λ̄jgj (t, x̄ (t)) = 0 a.e. in [0, T ] , j ∈ J.

Then x̄ is an efficient solution for (CNMP).
Assume that the Clarke regularity holds in the se-

quel of this section. We define the Lagrangian func-
tion L : X × Lp∞ [0, T ] × Lm∞ [0, T ] → R by

L (x, τ ;λ) =
T∫

0

[ p∑
i=1

τi (t)fi (t, x (t))+

m∑
j=1

λj (t) gj (t, x (t))

]
dt.

Let L
′
x(x̄, τ, λ;h) denote the usual direc-

tional derivative of L (·, τ, λ) at x̄ in the direction
h ∈ Ln∞ [0, T ] ,and let ∂xL (x, τ, λ) denote the
Clarke generalized gradient of L (·, τ, λ).

THEOREM 3. Let x̄ ∈ Ω. Suppose that
fi (t, ·) and gj (t, ·) are strictly invex at x̄ (t)(with re-
spect to V ) throughout [0, T ] for each i ∈ I and j ∈
Jwith the same η (x (t) , x̄ (t)) for all functions. Sup-
pose further that there exist τ̄ ∈ Lp∞ [0, T ] λ̄ ∈
Lm∞ [0, T ] such that

0 ∈ ∂xL
(
x̄, λ̄0, λ̄

)
,

τ̄ (t) ≥ 0, λ̄ (t) ≥ 0 a.e. in [0, T ] ,

(
τ̄ (t) , λ̄ (t)

) 
= 0 a.e. in [0, T ] ,
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λ̄jgj (t, x̄ (t)) = 0 a.e. in [0, T ] , j ∈ J.

Then x̄ is a weakly efficient solution for (CNMP).

THEOREM 4. Let x̄ ∈ Ω.Suppose that
fi (t, ·) are pseudo-invex and gj (t, ·) are quasi-invex
at x̄ (t)(with respect to V ) throughout [0, T ] for each
i ∈ I and j ∈ Jwith the same η (x (t) , x̄ (t)). Sup-
pose further that there exist τ̄ ∈ Lp∞ [0, T ] and λ̄ ∈
Lm∞ [0, T ]such that

0 ∈ ∂xL
(
x̄, τ̄ , λ̄

)
,

τ̄ (t) ≥ 0, λ̄ (t) ≥ 0 a.e. in [0, T ] ,

λ̄jgj (t, x̄ (t)) = 0 a.e. in [0, T ] , j ∈ J.

Then x̄ is an efficient solution for (CNMP).

The next two results extend the Propositions 4.3
and 4.4 of Rojas-Medar et al. [6].

THEOREM 5. Let x̄ ∈ Ω. Suppose that
fi (t, ·) are pseudo-invex and gj (t, ·) are quasi-invex
at x̄ (t)(with respect to V ) throughout [0, T ] for each
i ∈ I and j ∈ Jwith the same η (x (t) , x̄ (t)). If
there exist τ̄ ∈ Lp∞ [0, T ] and λ̄ ∈ Lm∞ [0, T ]such
that

0 ∈ ∂xL
(
x̄, τ̄ , λ̄

)

τ̄ (t) ≥ 0, λ̄ (t) ≥ 0 a.e. in [0, T ] ,

λ̄jgj (t, x̄ (t)) = 0 a.e. in [0, T ] , j ∈ J.

Then x̄ is an efficient solution for (CNMP).

THEOREM 6. Let x̄ ∈ Ω.Suppose that φ ( ·)are

pseudo-invex and
m∑

j=1
λ̄j (t) gj(t, x̄(t))dt are quasi-

invex at x̄ (t)(with respect to V ) throughout [0, T ] for
each i ∈ I and j ∈ Jwith the same η (x (t) , x̄ (t)).
If there exist τ̄ ∈ Lp∞ [0, T ] and λ̄ ∈ Lm∞ [0, T ], such
that

(
x̄, τ̄ , λ̄

)
satisfies (21)-(23). Then x̄ is an efficient

solution for (CNMP).

THEOREM 7 (Weak Duality). Assume that for
all x ∈ Ω and for all (u, τ, λ) ∈ W1, and fi (·) and
λ (t) g (·)are invex with respect to the same η. Then,

φ (x) 
 ≤ϕ (u) .

THEOREM 8 (Weak Duality). Assume that
for all x ∈ Ω and for all (u, τ, λ) ∈ W2, τifi (·) are
pseudo-invex and λj (t) gj (·) are quasi-invex with
respect to the same η. Then, φ (x) 
 ≤ψ (u) .

THEOREM 9 (Strong Duality). Letx∗be an ef-
ficient solution for (WCMD) and f (t, ·) and g (t, ·)be
uniformly Lipschitz. If the constraint qualification
holds at x∗, then there exist λ such that (x∗, λ) is
feasible for (WCMD). Moreover, if the weak duality
Theorem 1 holds, then (x∗, λ) is efficient to (WCMD).

THEOREM 10 (Strong Duality). Letx∗be
an efficient solution for (MWCMD) and
f (t, ·) and g (t, ·)be uniformly Lipschitz. If the
constraint qualification holds at x∗, then there exist
λ such that (x∗, λ) is feasible for (MWCMD).
Moreover, if the weak duality Theorem 2 holds, then
(x∗, λ) is efficient to (MWCMD).

6 Conclusion
We considered a nonsmooth continuous-time prob-
lem similar to the one considered in [6] and establish
Kuhn-Tucker type sufficint optimality conditions and
duality theorems for Wolfe as well as Mond-Weir type
of dual models for the problem under suitable invexity
assumption.
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