

High Relative Precision of Eigenvalues Calculated with Jacobi

Methods

ANA JULIA VIAMONTE*, RUI RALHA**

*Departamento de Inovação, Ciência e Tecnologia

 Universidade Portucalense
Rua Dr. Ant. Bernardino de Almeida, 541-619, 4200-072 Porto

PORTUGAL

** Departamento de Matemática
Universidade do Minho

Campus de Gualtar, Braga
PORTUGAL

Abstract: – The revolution in numerical methods started by parallel computation brought new life to the ‘old’
Jacobi method. In recent works, one-sided Jacobi methods have been proposed for the calculation of the
eigenvalues of symmetric matrices because they are highly suited to parallel computing and allow the
calculation of eigenvalues and eigenvectors with high relative precision. We make a study of the parallelization
of two different one-sided block Jacobi algorithms. The one-sided variants are interesting for parallel computers
because they significantly reduce the communication between processors; furthermore, the reorganization of
algorithms into blocks allows the use of BLAS3 modules which decreases the memory access time. In this paper
we present some results obtained with our implementations of the proposed one-sided algorithms.

Key-Words: Eigenvalues, One-sided Jacobi Algorithms, Block Methods, Relative precision.

1 Introduction

The Jacobi’s method for reducing a real
symmetric matrix to diagonal form has a long
history. First proposed in 1846, it was for many
years the preferred method for calculating the
eigenvalues and eigenvectors of symmetric
matrices. With the development of more efficient
algorithms in the sixties, the Jacobi methods were
only used when the execution time was not a
primary factor. In fact, for medium to large-sized
matrices, Jacobi’s methods require more
computational time than the methods that first
reduce the matrix to tridiagonal form (QR and
“divide-and-conquer”).

The revolution in numerical methods started by
parallel computation brought new life to the ‘old’
Jacobi method, on account of its easy
implementation on parallel machines.

The classical Jacobi method is a two-sided
method but for parallel computation in distributed

memory machines the one-sided variants are more
interesting because they significantly reduce the
communication between processors. Furthermore,
the reorganization of algorithms into blocks
considerably decreases the memory access time.

In this study, we perform a comparison between
Jacobi methods and other methods in order to
assess the relative numerical precision of results for
some symmetric matrices.

In section 2 we present the sequential Jacobi
algorithms, in section 3 we describe the
corresponding block versions, in section 4 the
parallel algorithms are proposed and in section 5
some numerical results are given; finally, some
conclusions and drawn in section 6.

2 Sequential Algorithms

The classic two-sided Jacobi algorithm reduces a
given symmetric matrix A to diagonal form by a
sequence of plane rotations; the basic idea of one-

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp580-586)

sided methods is to apply each rotation on the left
side or on the right side of A only.

In the first one-sided algorithm studied, Method
I, we compute the sequence of matrix pairs (Bk,
Vk), k = 1, 2,…, defined by

�
�
�

=+

=+
kVkR1kV
kBkR1kB

with B0 = A and V0 = I. For every value of k, the
product

kAAVkVVkB T
k

T
k ==

is a symmetric matrix similar to A. Consequently,
if we choose the angles θk as in the double-sided
process, we execute essentially the same
transformation. However, we do not compute the
matrix Ak explicitly but keep it in the form of the
two factors Bk and Vk, instead. Now, the
calculation of θk involves the (p, q), (p, p) and (q,

q) elements of T
kAVkV . In the two-sided Jacobi

method these are immediately available but in
Method I they must be computed as scalar products
of the pth and qth rows of Bk and Vk. As in the
classical algorithm, the process terminates when

T
kVkBkA = is almost diagonal. The eigenvalues of

A are the diagonal elements of T
kVkB and the

eigenvectors are the rows of Vk.
In our implementation of Method I, we do not

apply a rotation when the entry to be annihilated is
smaller than a quantity which depends upon a
threshold which gets smaller in every sweep as the
method progresses. We do not go into details here.
A very simply description of the method is as
follows:

Algorithm 1
while (not converged)
 for p =1 to (n-1)
 for q=(p+1) to n
 compute entries in positions (p, p),
 (p, q) and (q, q) of matrix Ak

 if () thresholdAqqAppApqabs >×
 compute the rotation Rk in the plane (p, q)
 update rows p and q of Bk and Vk
 end if
 end for q
 end for p
 update threshold
end while

 In the second one-sided Jacobi method studied,
Method II, we do not diagonalize A but we convert
M = A2 into diagonal form, instead. In fact, we
compute the sequence of matrices Ck, k = 1, 2, ...
based upon the formulae

�
�
�

=
= −−

T
11

kkk

kkk

CCM

CRC

with C0 = A. Hence
T

1-k1-k1-kk R MRM =
and we choose the angles θk in such a way that
Mk converges to a diagonal matrix. Again, the
calculation of θk requires the entries (p, p), (p, q),
and (q, q) of Mk to be known and, since we do not
form this matrix explicitly, those entries must be
computed as scalar products with the pth and qth
rows of Ck. This is the price to be paid in any one-
sided method.
Therefore, we see that Method II converts M = A2
to diagonal form in an implicit manner by making
rows of Ck mutually orthogonal. This can be
understood as a method that computes the
eigenvalues of A from the square roots of the
singular values of A2. Because of this, the accuracy
of the smaller eigenvalues may be unsatisfactory
when A is not well-conditioned. The situation may
be improved by using Method II for the
computation of the eigenvectors only and by using
the Rayleigh Quotient for the calculation of the
corresponding eigenvalues, i. e.,

xxAxx TT=λ
where x is one row of matrix Ck and λ the
corresponding eigenvalue. A simple description of
the method follows:

Algorithm 2
while (not converged)
 for p =1 to (n-1)
 for q=(p+1) to n
 compute entries in positions (p, p),
 (p, q) and (q, q) of matrix Mk

 if () thresholdMqqMppMpqabs >×
 compute the rotation Rk in the plane (p, q)
 update rows of matrix Ck ()kkk CRC =
 end if
 end for q
 end for p
 update threshold
end while
compute eigenvalues (Rayleigh quotient)

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp580-586)

3 Block Algorithms

3.1. Method I

As we have seen, this method works with two
matrices, B and V. We now decompose B and V to
get matrices of square blocks of size b × b; the
block algorithm works with these blocks in a way
that mimics the way used by the non-blocked
algorithm for simple scalar entries; inside each
block, the algorithm works by making a sweep over
the elements in the block.

Fig.1: block decomposition of matrices B and V.

Jacobi methods produce a sequence of matrices

t
kkkk QAQA =+1 , k = 0, 1,....; in the classical

method Qk represents a simple plane rotation and
each update Q A Qk k k

t annihilates a pair of off-
diagonal elements of Ak, in the block version each
Qk represents a set of rotations that brings to zero
all the entries in a block.

With each pair of consecutive diagonal blocks of
Ak in positions (2i-1,2i-1) and (2i,2i), for
i=1,…,n/2b, we form a symmetric block of order
2b by joining to these diagonal blocks the off-
diagonal blocks in positions (2i,2i-1) and (2i,2i-1).
Exploiting symmetry, we only need to annihilate
the entries below the main diagonal, i.e., the entries
below the main diagonal in each one of the two
diagonal blocks (we will refer to these as triangular
sweeps) and all the entries in the off diagonal block
(we will refer to this as a square sweep). The work
over each one of these (2b × 2b) blocks is
performed using level-1 BLAS. The corresponding
rotations are accumulated to form a matrix Q of
order 2b. Finally, the corresponding rows of blocks
of order 2b of matrices B and V are updated with
Q. These matrix-matrix multiplications are carried
out using level-3 BLAS.

After completing a set of block rotations, a
permutation of rows of Bk and Vk is performed; this
corresponds to a permutation of rows and also
columns of Ak. We have used the odd-even order
[3] because it simplifies the block version of the
sequential algorithm and allows parallelization. If n
= 8, numbering indices from 1 to 8, and initially
grouping the indices in the pairs {(1, 2), (3, 4), (5,
6), (7, 8)}, the sets of pairs of indices are obtained
as follows: {(1, 2), (3, 4), (5, 6), (7, 8)}, {(1,7),
(2,4), (3,6), (5,8)}, {(1,4), (2,6), (3,8), (5,7)}, … .

Fig.2: the odd-even order for n=8.

Each permutation brings a new set of n/2b

blocks of size b × b into the annihilating positions
(2i,2i-1). In the parallel version of the algorithm,
the accomplishment of these permutations requires
some data transference between processors.

The cost per sweep of the algorithm when
computing eigenvalues and eigenvectors is:

() 2
3

2
31

3
3 8191211 nbkbnkknk +−+

where k1 and k3 represent the cost of an arithmetic
operation performed using BLAS 1 and BLAS 3,
respectively.

A very simplified description of the block
version of Method I is as follows:

Algorithm 3
while (not converged)
 for i = 1 to n/2b
 Compute blocks A(2i-1,2i-1), A(2i,2i) and
 A(2i,2i-1)
 Execute triangular and square sweeps and
 accumulate rotations in Q (2b×2b).
 Update matrices B and V (B =QB, V = QV)
 end i
 apply permutation according to odd-even order
end while

3.2 Method II
The second one-sided Jacobi algorithm works with

only one matrix Ck such that T2 kkkk CCMA == .
This method has the advantage of being fast but, as

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp580-586)

said before, it is less accurate. The strategy for the
design of the block version of this algorithm is
similar to that used in Method I: Mk is implicitly
decomposed into blocks of size b×b and with each
pair of consecutive diagonal blocks of Mk in
positions (2i-1,2i-1) and (2i,2i), for i=1,…,n/2b, we
form a symmetric block of size 2b × 2b by joining
to these diagonal blocks the off-diagonal blocks in
positions (2i,2i-1) and (2i,2i-1). Before each sweep,
the blocks of Mk need to be computed from the
corresponding blocks of our working matrix Ck.

The cost per sweep is:
() 2

3
2

31
3

3 815127 nbkbnkknk +−+
Let A a real symmetric matrix, and C0 = A. If n

is the dimension of the matrix and b the dimension
of the block, the block version of Method II can be
described as follows:

Algorithm 4
while (not converged)
 for i = 1 to n/2b
 Compute blocks M(2i-1,2i-1), M(2i,2i) and
 M(2i,2i-1)
 Execute triangular and square sweeps and
 accumulate rotations in Q (2b×2b).
 Update matrix C (C =QC)
 end i
 apply permutation according to odd-even order
end while

4 Parallel Algorithms

One-sided algorithms are well suited to parallel
implementation. If we assign a number of complete
rows of B and V to each processor, then, unlike in
the two-sided algorithm where each rotation has to
be broadcast, communication is required only
between adjacent processors, to exchange rows.
The key of a parallel algorithm is a mobile scheme
that reduces communication between processors
and brings each off-diagonal entry to an
annihilating position in the course of each sweep.

The algorithm is organized in terms of n/2
computational nodes, each node dealing with a pair
of rows; we will assume that these computational
nodes are connected in a ring. In each step, node j,
j = 1, …, n/2, performs a rotation in the (2j-1,2j)
plane that is intended to introduce, in an implicit
manner, a zero in positions (2j-1,2j) and (2j,2j-1) of
a symmetric matrix. One sweep of Method I can
be described as follows:

Algorithm 5 (node j, j=1,…, n/2)
for i = 1 to n-1
 Compute A(2j-1,2j-1), A(2j-1,2j) and A(2j, 2j)
 Compute the rotation R in the plane (2j-1, 2j).
 Update rows 2j-1 and 2j of B and V
 Move Rows of B and V
end i

With the same data distribution, one sweep of
Method II can be described as follows:

Algorithm 6 (node j, j=1,…, n/2)
for i = 1 to n-1
 Compute M(2j-1,2j-1), M(2j-1,2j) and M(2j, 2j)
 Compute the rotation R in the plane (2j-1, 2j).
 Update rows 2j-1 and 2j of C (C=RC)
 Move Rows of C
end i

For the Rayleigh quotient improvement of the
eigenvalues, each processor will use each one of
the local rows of C to compute approximations for
the corresponding eigenvalues. Assuming that each
processor has kept in its local memory the assigned
rows of the matrix A, the parallel implementation
of the Rayleigh quotient requires more
communication since each processor will need the
complete A to compute products Ax.

Let A be a real symmetric matrix of order n, B0
= A and V0 = I. If b is the dimension of the block
and nbp the number of blocks by processor, for
each node j, the parallel implementation of the
block version of Method I is as follows:

Algorithm 7:
while (not converged)

 For i = 1 to nbp
2

 Compute the local blocks of matrix A.
 Execute triangular sweep in the block 2b×2b
 Update rows and columns in matrix Q
 Update rows of local matrices locB and locV
{locB = Q locB and locV = Q locV}
 Communication (even step)
 For i = 1 to (2−b

n)

 If step is odd

 for j =1 to 2
nbp

 Compute the corresponding local
blocks of matrix A
 Execute total Sweep in the block b×b

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp580-586)

 Update rows and columns in matrix Q
 Update rows of local matrices locB
and locV {locB = Q locB and locV = Q locV}
 Communication (odd step)
 If step is even

 for j =1 to 2
nbp

 Compute the corresponding local
blocks of matrix A
 Execute total Sweep in the block b×b
 Update rows and columns in matrix Q
 Update rows of local matrices locB
and locV {locB = Q locB and locV = Q locV}
 Communication (even step)
Compute Eigenvalues

Let A a real symmetric matrix and C0 = A. If n is

the dimension of the matrix, b the dimension of the
block and nbp the number of blocks by processor.
For which node j, the Method II by blocks is
defined by the passes,

Algorithm 8:
While (convergence is not obtained)

 For i = 1 to nbp
2

 Compute the local blocks of matrix M=A2.
 Execute triangular sweep in the block 2b×2b
 Update rows and columns in matrix Q
 Update local rows locC {locC = Q locC}
 Communication (even step)
 For i = 1 to (2−b

n)

 If step is odd

 for j =1 to 2
nbp

 Compute the corresponding local
blocks of matrix M = A2

 Execute total Sweep in the block b×b
 Update rows and columns in matrix Q
 Update locC {locC = Q locC}
 Communication (odd step)
 If step is even
 for j =1 to 2

nbp

 Compute the corresponding local
blocks of matrix M = A2

 Execute total Sweep in the block b×b
 Update rows and columns in matrix Q
 Update rows of local matrix locC
{locC = Q locC}
 Communication (even step)
Compute Eigenvalues and eigenvectors

5 Numerical Results

5.1 Accuracy of results
In [4], Demmel and Veselic proved that for scaled
matrices H = DAD, with)(2/1HdiagD = and A a
matrix whose diagonal elements are equal to the
unity, the accuracy of the eigenvalues computed
with the Jacobi method depend upon ()Ak instead

of ()Hk . More precisely, it has been shown that
we have for the relative errors of the eigenvalues of
H computed with the Jacobi method

()A�k
�

��

i

ii
≤

− ˆ

where � denotes a quantity not much larger than
the arithmetic precision. Therefore, when

() ()AkHk >> the Jacobi method is more accurate
than QR.

 We now present some results obtained for some
matrices of this type. These results have been
produced with the following codes: two-sided
Jacobi method (JBS), one-sided Jacobi method I
(J1S), one-sided Jacobi method II (J2S), block one-
sided method I (J1SB), block one-sided method II
(J2SB), functions eig (MATLAB), dsyevx
(LAPACK) and lin_eig_self (IMSL).

 In a first test we considered the following matrix
(symmetric positive definite)

�
�
�
�
�

�

�

�
�
�
�
�

�

	

=

191019102910

910201029103910

1910291040104910

2910391049106010

H .

We have H=DAD with

�
�
�
�

�

�

�
�
�
�

�

	

=

1000

0101000
0020100
0003010

D and

�
�
�
�

�

�

�
�
�
�

�

	

=

11.011.0
1.011.01.0
1.01.011.0
1.01.01.01

A

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp580-586)

In Table 2 we present the maximum relative
error of the computed eigenvalues of H and the
ortogonality of the eigenvectors produced by each
one of the 8 codes
 IVV t − () iii λλ−λ ˆmax

JBS 1,18e-32 1,78e-16
J1S 1,18e-32 1,78e-16
J2S 1,35e-21 1,78e-16
J1SB 1,18e-32 1,78e-16
J2SB 2,25e-16 1,67e-16
MATLAB 1,90e-17 1,89e+33
LAPACK 1,83e-32 7,31e-04
IMSL 2,96e-16 1,85e-06

Table 2 – Relative error of the eigenvalues and
ortogonality of the eigenvectors of H

As expected, the implementations of the Jacobi
methods produce eigenvalues with better relative
precision that the other implementations which are
based upon the QR method. We carried out other
tests that essentially produce similar results. From a
random symmetric matrix A with () 34,1 +≈ eAk ,
we generated a very ill-conditioned H=DAD using
a diagonal D with elements of very different
magnitudes. The results are given in Fig.3 and
Fig.4; for the block methods, square blocks of
dimension 2, 4, 8 and 16 have been used.

Erro Relativo Máximo dos Valores Próprios

1,0E-20

1,0E+04

1,0E+28

1,0E+52

1,0E+76

Fig.3: relative error of the eigenvalues of a matrix

DAD of order 512
Ortogonalidade dos Vectores Próprios - || VtV - I||

1,0E-16

1,0E-14

1,0E-12

1,0E-10

1,0E-08

1,0E-06

1,0E-04

Fig.4: orthogonality of the eigenvectors of a matrix

DAD of order 512

5.2 Efficiency
In Fig.5 we display the time (in seconds) taken by
each one of the tested codes for the case of our
matrix of order 512. It shows that the Jacobi
methods are in fact much slower than the
competitors.

Tempo de execução (em segundos)

0,0
1,0

100,0
10.000,0

M
A

T
L

A
B

IM
SL J1

S

J1
SB

(b
=2

)

J1
SB

(b
=8

)

J2
SB

(b
=2

)

J2
SB

(b
=8

)

Fig.5: Execution time (in seconds) for a matrix of
order 512

In Fig.6 we compare the execution time of the

parallel algorithms.

Execution Time

0,000
100,000
200,000
300,000
400,000
500,000
600,000
700,000
800,000

1
P

ro
c.

2
P

ro
c.

4
P

ro
c.

8
P

ro
c.

16
 P

ro
c.

J1P

J1PB (db = 2)

J1PB (db = 4)

J1PB (db = 8)

J1PB (db = 16)

J2P

J2PB (db = 2)

J2PB (db = 4)

J2PB (db = 8)

J2PB (db = 16)

 Fig.6: Execution time (in seconds) for the parallel
algorithms

In Fig.7 we display the efficiency of the parallel

algorithms.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp580-586)

Efficiency

80%

85%

90%

95%

100%

105%

110%

2 P
roc

.

4 P
roc

.

8 P
roc

.

16
 P

roc
.

J1P

J1PB (b = 2)

J1PB (b = 4)

J1PB (b = 8)

J1PB (b = 16)

J2P

J2PB (b = 2)

J2PB (b = 4)

J2PB (b = 8)

J2PB (b = 16)

Fig.7: Efficiency of parallel algorithms

6 Conclusions
The choice of the method for the determination

of the eigenvalues and eigenvectors of a given
matrix is not a simple problem. Although Jacobi
methods are slower than methods that first reduce
the matrix to tridiagonal form, those are able to find
all eigenvalues with high relative accuracy when
the matrix is well scaled. Therefore, Jacobi
methods are of interest in applications that require
results with high precision.

 Moreover, Jacobi methods are better suited for
parallel implementation on systems with hundreds
or thousand of processors. One-sided variants
reduce significantly the communication and may
become viable in the context of grid computing
applications that require the computation of
eigenvalues and eigenvectors of very large dense
matrices.

We have considered the parallel implementation
of two one-sided Jacobi algorithms. One of these
one-sided methods (method I) is equivalent to the
standard two-sided method. Method II is faster than
method I but not as accurate.

 The block methods are as accurate as the non-
block versions and considerably reduce the
memory access time.

References:
[1] A. Chartres, Adaptation of the Jacobi Method

for a Computer with Magnetic-tape Backing
Store, The Computer Journal, No.5, 1963,
pp.51-60.

[2] Ana Julia Viamonte, Métodos de Jacobi para o
Cálculo de Valores e Vectores Próprios de
Matrizes Simétricas, Master Thesis, University
of Minho, Braga, Portugal, July 1996.

[3] Ana Julia Viamonte and R. M. Ralha, Parallel
Jacobi Algorithms for the Computation of the
Eigensystem of Real Symmetric Matrices,
VECPAR96, June 1996.

[4] J. Demmel e K. Veselic, Jacobi’s Method Is
More Accurate Than QR, SIAM J. Matrix
Anal. Appl., Vol.4, No.13, 1992, pp.1204-
1245.

[5] D. Gimenez, V. Hernandez, R. van de Geijn and
A. M. Vidal, A block Jacobi method on a mesh
of processors, Concurrency: Practice and
Experience, Vol.5, No.9, 1997, pp. 391-411.

[6] D. Gimenez, M. J. Majado, R. M. Ralha and A.
J. Viamonte, One-sided block Jacobi Methods
for the Symmetric Eigenvalue Problem,
VECPAR98, June 1998.

[7] Ana Julia Viamonte, Métodos Unilaterais de
Jacobi para a Computação paralela de Valores
e Vectores Próprios de Matrizes Simétricas, PhD
Thesis, University of Minho, Braga, Portugal.
September 2003.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp580-586)

