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Abstract: – The revolution in numerical methods started by parallel computation brought new life to the ‘old’ 
Jacobi method. In recent works, one-sided Jacobi methods have been proposed for the calculation of the 
eigenvalues of symmetric matrices because they are highly suited to parallel computing and allow the 
calculation of eigenvalues and eigenvectors with high relative precision. We make a study of the parallelization 
of two different one-sided block Jacobi algorithms. The one-sided variants are interesting for parallel computers 
because they significantly reduce the communication between processors; furthermore, the reorganization of 
algorithms into blocks allows the use of BLAS3 modules which decreases the memory access time. In this paper 
we present some results obtained with our implementations of the proposed  one-sided algorithms.  
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1 Introduction 

The Jacobi’s method for reducing a real 
symmetric matrix to diagonal form has a long 
history. First proposed in 1846, it was for many 
years the preferred method for calculating the 
eigenvalues and eigenvectors of symmetric 
matrices. With the development of more efficient 
algorithms in the sixties, the Jacobi methods were 
only used when the execution time was not a 
primary factor. In fact, for medium to large-sized 
matrices, Jacobi’s methods require more 
computational time than the methods that first 
reduce the matrix to tridiagonal form (QR and 
“divide-and-conquer”). 

The revolution in numerical methods started by 
parallel computation brought new life to the ‘old’ 
Jacobi method, on account of its easy 
implementation on parallel machines. 

The classical Jacobi method is a two-sided 
method but for parallel computation in distributed 

memory machines the one-sided variants are more 
interesting because they significantly reduce the 
communication between processors. Furthermore, 
the reorganization of algorithms into blocks 
considerably decreases the memory access time. 

In this study, we perform a comparison between 
Jacobi methods and other methods in order to 
assess the relative numerical precision of results for 
some symmetric matrices. 

In section 2 we present the sequential Jacobi 
algorithms, in section 3 we describe the 
corresponding block versions, in section 4 the 
parallel algorithms are proposed and in section 5 
some numerical results are given; finally, some 
conclusions  and drawn in section 6. 

 
2 Sequential Algorithms 

The classic two-sided Jacobi algorithm reduces a 
given symmetric matrix A to diagonal form by a 
sequence of plane rotations; the basic idea of one-
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sided methods is to apply each rotation on the left 
side or on the right side of A only. 

In the first one-sided algorithm studied, Method 
I, we compute the sequence of matrix pairs (Bk, 
Vk), k = 1, 2,…, defined by 

�
�
�

=+

=+
kVkR1kV
kBkR1kB

   

with B0 = A and V0 = I. For every value of k, the 
product 

kAAVkVVkB T
k

T
k ==    

is a symmetric matrix similar to A. Consequently, 
if we choose the angles θk as in the double-sided 
process, we execute essentially the same 
transformation. However, we do not compute the 
matrix Ak explicitly but keep it in the form of the 
two factors Bk and Vk, instead. Now, the 
calculation of θk involves the (p, q), (p, p) and (q, 

q) elements of T
kAVkV . In the two-sided Jacobi 

method these are immediately available but in 
Method I they must be computed as scalar products 
of the pth and qth rows of Bk and Vk. As in the 
classical algorithm, the process terminates when 

T
kVkBkA = is almost diagonal. The eigenvalues of 

A are the diagonal elements of T
kVkB and the 

eigenvectors are the rows of Vk.  
In our implementation of Method I, we do not 

apply a rotation when the entry to be annihilated is 
smaller than a quantity which depends upon a 
threshold which gets smaller in every sweep as the 
method progresses. We do not go into details here. 
A very simply description of the method is as 
follows: 

 
Algorithm 1 
while (not converged) 
 for p =1 to (n-1) 
   for q=(p+1) to n 
  compute entries  in positions (p, p),  
       (p, q) and (q, q) of matrix Ak  

   if ( ) thresholdAqqAppApqabs >×  
    compute the rotation Rk in the plane (p, q) 
                  update rows p and q of Bk and Vk 
            end if 
      end for q 
   end for p 
  update threshold 
end while 
 

 In the second one-sided Jacobi method studied, 
Method II, we do not diagonalize A but we convert 
M = A2 into diagonal form, instead. In fact, we 
compute the sequence of matrices Ck, k = 1, 2, ...  
based upon the formulae 

�
�
�

=
= −−

T
11

 

 

kkk

kkk

CCM

CRC
 

with C0 = A. Hence 
T

1-k1-k1-kk R  MRM =  
and we choose the angles  θk  in  such  a  way that 
Mk converges to a diagonal matrix. Again, the 
calculation of θk requires the entries (p, p), (p, q), 
and (q, q) of Mk to be known and, since we do not 
form this matrix explicitly, those entries must be 
computed as scalar products with the pth and qth 
rows of Ck. This is the price to be paid in any one-
sided method.  
Therefore, we see that Method II converts M = A2 
to diagonal form in an implicit manner by making 
rows of Ck mutually orthogonal. This can be 
understood as a method that computes the 
eigenvalues of A from the square roots of the 
singular values of A2. Because of this, the accuracy 
of the smaller eigenvalues may be unsatisfactory 
when A is not well-conditioned. The situation may 
be improved by using Method II for the 
computation of the eigenvectors only and by using 
the Rayleigh Quotient for the calculation of the 
corresponding eigenvalues, i. e.,  

xxAxx TT=λ  
where x is one row of matrix Ck and λ the 
corresponding eigenvalue. A simple description of 
the method follows: 
 
Algorithm 2 
while (not converged) 
  for p =1 to (n-1) 
 for q=(p+1) to n 
   compute entries in positions (p, p),  
        (p, q) and (q, q) of matrix Mk  

        if ( ) thresholdMqqMppMpqabs >×  
           compute the rotation Rk in the plane (p, q) 
   update rows of matrix Ck ( )kkk CRC =  
        end if 
    end for q 
  end for p 
  update threshold 
end while 
compute eigenvalues (Rayleigh quotient) 
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3   Block Algorithms   
 
3.1. Method I 

As we have seen, this method works with two 
matrices, B and V. We now decompose B and V to 
get matrices of square blocks of size  b × b; the 
block algorithm works with these blocks in a way 
that mimics the way used by the non-blocked 
algorithm for simple scalar entries; inside each 
block, the algorithm works by making a sweep over 
the elements in the block. 

 
Fig.1: block decomposition of matrices B and V. 
 
Jacobi methods produce a sequence of matrices 

t
kkkk QAQA =+1 ,  k = 0, 1,....; in the classical 

method Qk represents a simple plane rotation and 
each update Q A Qk k k

t annihilates a pair of off-
diagonal elements of Ak, in the block version each 
Qk represents a set of rotations that brings to zero 
all the entries in a block.  

With each pair of consecutive diagonal blocks of 
Ak in positions (2i-1,2i-1) and (2i,2i), for 
i=1,…,n/2b, we form a symmetric block of  order 
2b by joining to these diagonal blocks the off-
diagonal blocks in positions (2i,2i-1) and (2i,2i-1). 
Exploiting symmetry, we only need to annihilate 
the entries below the main diagonal, i.e., the entries 
below the main diagonal in each one of the two 
diagonal blocks (we will refer to these as triangular 
sweeps) and all the entries in the off diagonal block 
(we will refer to this as a square sweep). The work 
over each one of these (2b × 2b) blocks is 
performed using level-1 BLAS. The corresponding 
rotations are accumulated to form a matrix Q of 
order 2b.  Finally, the corresponding rows of blocks 
of order 2b of matrices B and V are updated with 
Q. These matrix-matrix multiplications are carried 
out using level-3 BLAS.  

After completing a set of  block rotations, a 
permutation of rows of Bk and Vk is performed; this 
corresponds to a permutation of rows and also 
columns of Ak. We have used the odd-even order 
[3] because it simplifies the block version of the 
sequential algorithm and allows parallelization. If n 
= 8, numbering indices from 1 to 8, and initially 
grouping the indices in the pairs {(1, 2), (3, 4), (5, 
6), (7, 8)}, the sets of pairs of indices are obtained 
as follows:  {(1, 2), (3, 4), (5, 6), (7, 8)},   {(1,7), 
(2,4), (3,6), (5,8)},    {(1,4), (2,6), (3,8), (5,7)}, … . 

 
Fig.2: the odd-even order for n=8. 

 
Each permutation brings a new set of n/2b 

blocks of size b × b into the annihilating positions 
(2i,2i-1). In the parallel version of the algorithm, 
the accomplishment of these permutations requires 
some data transference between processors.  

The cost per sweep of the algorithm when 
computing eigenvalues and eigenvectors is: 

( ) 2
3

2
31

3
3 8191211 nbkbnkknk +−+   

where k1 and k3 represent the cost of an arithmetic 
operation performed using BLAS 1 and BLAS 3, 
respectively. 

A very simplified description of the block 
version of Method I is as follows: 

 
Algorithm 3 
while (not converged) 
 for i = 1 to n/2b 
  Compute blocks A(2i-1,2i-1),  A(2i,2i) and  
                                                               A(2i,2i-1)  
  Execute triangular and square sweeps and  
          accumulate rotations in Q (2b×2b). 
  Update matrices B and V (B =QB,  V = QV) 
     end i 
    apply permutation according to odd-even order 
end while        
 
 
3.2 Method II 
The second one-sided Jacobi algorithm works with 

only one matrix Ck such that T2  kkkk CCMA == . 
This method has the advantage of being fast but, as 
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said before, it is less accurate. The strategy for the  
design of the block version of this algorithm is 
similar to that used in Method I: Mk is implicitly 
decomposed into blocks of size b×b and with each 
pair of consecutive diagonal blocks of Mk in 
positions (2i-1,2i-1) and (2i,2i), for i=1,…,n/2b, we 
form a symmetric block of  size 2b × 2b by joining 
to these diagonal blocks the off-diagonal blocks in 
positions (2i,2i-1) and (2i,2i-1). Before each sweep, 
the blocks of  Mk need to be computed from the 
corresponding blocks of our working matrix Ck.  

The cost per sweep is: 
( ) 2

3
2

31
3

3 815127 nbkbnkknk +−+     
Let A a real symmetric matrix, and C0 = A. If n 

is the dimension of the matrix and b the dimension 
of the block, the block version of Method II can be 
described as follows:  
 
Algorithm 4 
while (not converged) 
 for i = 1 to n/2b 
  Compute blocks M(2i-1,2i-1),  M(2i,2i) and  
                                                               M(2i,2i-1)  
  Execute triangular and square sweeps and  
          accumulate rotations in Q (2b×2b). 
  Update matrix C (C =QC) 
     end i 
    apply permutation according to odd-even order 
end while        
 
 

4 Parallel Algorithms 
 

One-sided algorithms are well suited to parallel 
implementation. If we assign a number of complete 
rows of B and V to each processor, then, unlike in 
the two-sided algorithm where each rotation has to 
be broadcast, communication is required only 
between adjacent processors, to exchange rows. 
The key of a parallel algorithm is a mobile scheme 
that reduces communication between processors 
and brings each off-diagonal entry to an 
annihilating position in the course of each sweep.  

The algorithm is organized in terms of n/2 
computational nodes, each node dealing with a pair 
of rows; we will assume that these computational 
nodes are connected in a ring. In each step,  node j, 
j = 1, …, n/2, performs a rotation in the (2j-1,2j) 
plane that is intended to introduce, in an implicit 
manner, a zero in positions (2j-1,2j) and (2j,2j-1) of 
a symmetric matrix. One sweep of  Method I can 
be described as follows: 

 
Algorithm 5 (node j, j=1,…, n/2) 
for i = 1 to  n-1 
 Compute A(2j-1,2j-1), A(2j-1,2j) and A(2j, 2j)   
 Compute the rotation R in the plane (2j-1, 2j). 
 Update rows 2j-1 and 2j  of B  and V  
 Move Rows of  B and V 
end i 
 

With the same data distribution, one sweep of  
Method II can be described as follows:  
 
Algorithm 6 (node j, j=1,…, n/2) 
for i = 1  to  n-1 
 Compute M(2j-1,2j-1), M(2j-1,2j) and M(2j, 2j)   
     Compute the rotation R in the plane (2j-1, 2j). 
 Update rows 2j-1 and 2j  of  C (C=RC)  
 Move Rows of  C 
end i 
 
For the Rayleigh quotient improvement of the 
eigenvalues, each processor will use each one of 
the local rows of C to compute approximations for 
the corresponding eigenvalues. Assuming that each 
processor has kept in its local memory the assigned 
rows of the matrix A, the parallel implementation 
of the Rayleigh quotient requires more 
communication since each processor will need the 
complete A to compute products Ax.  
 

Let A be a real symmetric matrix of order n, B0 
= A  and  V0 = I.  If b is the dimension of the block 
and nbp the number of blocks by processor, for  
each node j, the parallel implementation of the 
block version of Method I is as follows: 

 
Algorithm 7: 
while (not converged) 

 For i = 1   to   nbp
2  

  Compute the local blocks of  matrix A.  
  Execute triangular sweep in the block 2b×2b 
  Update rows and columns in matrix Q 
  Update rows of local matrices locB and locV  
{locB = Q locB  and locV = Q locV} 
 Communication (even step) 
 For  i = 1   to   ( 2−b

n ) 

  If step is odd 

   for j =1 to 2
nbp  

    Compute the corresponding local 
blocks of  matrix A 
    Execute total Sweep in the block b×b 
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    Update rows and columns in matrix Q 
    Update rows of local matrices locB 
and locV  {locB = Q locB  and locV = Q locV} 
  Communication (odd step) 
  If step is even 

   for j =1 to 2
nbp  

    Compute the corresponding local 
blocks of  matrix A 
    Execute total Sweep in the block b×b 
    Update rows and columns in matrix Q 
    Update rows of local matrices locB 
and locV  {locB = Q locB  and locV = Q locV} 
  Communication (even step) 
Compute Eigenvalues 

 
Let A a real symmetric matrix and C0 = A. If n is 

the dimension of the matrix, b the dimension of the 
block  and nbp the number of blocks by processor. 
For which node j, the Method II by blocks is 
defined by the passes, 

 
Algorithm 8: 
While (convergence is not obtained) 

 For i = 1   to   nbp
2  

  Compute the local blocks of  matrix M=A2.  
  Execute triangular sweep in the block 2b×2b 
  Update rows and columns in matrix Q 
  Update local rows locC {locC = Q locC} 
 Communication (even step) 
 For  i = 1   to   ( 2−b

n ) 

  If step is odd 

   for j =1 to 2
nbp  

    Compute the corresponding local 
blocks of  matrix M = A2 

    Execute total Sweep in the block b×b 
    Update rows and columns in matrix Q 
    Update locC {locC = Q locC} 
  Communication (odd step) 
  If step is even 
   for j =1 to 2

nbp  

    Compute the corresponding local 
blocks of  matrix M = A2 

    Execute total Sweep in the block b×b 
    Update rows and columns in matrix Q 
    Update rows of local matrix locC 
{locC = Q locC} 
  Communication (even step) 
Compute Eigenvalues and eigenvectors 
 

 
5   Numerical Results  
 
5.1 Accuracy of results 
In [4], Demmel and Veselic proved that for scaled 
matrices H = DAD, with )( 2/1HdiagD = and A a 
matrix whose diagonal elements are equal to the 
unity, the accuracy of the eigenvalues computed 
with the Jacobi method depend upon ( )Ak  instead 

of ( )Hk . More precisely, it has been shown that 
we have for the relative errors of the eigenvalues of 
H computed with the Jacobi method  

( )A�k
�

��

i

ii
≤

− ˆ
 

where �  denotes a quantity not much larger than 
the arithmetic precision. Therefore, when  

( ) ( )AkHk >>  the Jacobi method is more accurate 
than QR.  

 
   We now present some results obtained for some 
matrices of this type. These results have been 
produced with the following codes: two-sided 
Jacobi method (JBS), one-sided Jacobi method I 
(J1S), one-sided Jacobi method II (J2S), block one-
sided method I (J1SB), block one-sided method II 
(J2SB), functions eig (MATLAB), dsyevx 
(LAPACK) and lin_eig_self (IMSL).  
 
   In a first test we considered the following matrix 
(symmetric positive definite) 

�
�
�
�
�

�

�

�
�
�
�
�

�

	

=

191019102910

910201029103910

1910291040104910

2910391049106010

H .  

We have H=DAD with  

�
�
�
�

�

�

�
�
�
�

�

	

=

1000

0101000
0020100
0003010

D  and 

�
�
�
�

�

�

�
�
�
�

�

	

=

11.011.0
1.011.01.0
1.01.011.0
1.01.01.01

A  
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In Table 2 we present the maximum relative 
error of the computed eigenvalues of H and the 
ortogonality of the eigenvectors produced by each 
one of the 8 codes  
 IVV t −  ( ) iii λλ−λ ˆmax  

JBS 1,18e-32 1,78e-16 
J1S 1,18e-32 1,78e-16 
J2S 1,35e-21 1,78e-16 
J1SB 1,18e-32 1,78e-16 
J2SB 2,25e-16 1,67e-16 
MATLAB 1,90e-17 1,89e+33 
LAPACK 1,83e-32 7,31e-04 
IMSL 2,96e-16 1,85e-06 

Table 2 – Relative error of the eigenvalues and 
ortogonality of the eigenvectors of H 

 
As expected, the implementations of the Jacobi 
methods produce eigenvalues with better relative 
precision that the other implementations which are 
based upon the QR method. We carried out other 
tests that essentially produce similar results. From a 
random symmetric matrix A with ( ) 34,1 +≈ eAk , 
we generated a very ill-conditioned H=DAD using 
a diagonal D with elements of very different 
magnitudes. The results are given in Fig.3 and 
Fig.4; for the block methods, square blocks of 
dimension 2, 4, 8 and 16 have been used. 

 
 
 

Erro Relativo Máximo dos Valores Próprios

1,0E-20

1,0E+04

1,0E+28

1,0E+52

1,0E+76

 
Fig.3: relative error of the eigenvalues of a matrix 

DAD of order 512 
Ortogonalidade dos Vectores Próprios - || VtV - I||

1,0E-16

1,0E-14

1,0E-12

1,0E-10

1,0E-08

1,0E-06

1,0E-04

 
Fig.4: orthogonality of the eigenvectors of a matrix 

DAD of order 512 
 

5.2 Efficiency  
In Fig.5 we display the time (in seconds) taken by 
each one of the tested codes for the case of our 
matrix of order 512. It shows that the Jacobi 
methods are in fact much slower than the 
competitors. 
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Fig.5: Execution time (in seconds) for  a matrix of 
order 512 

 
 
In Fig.6 we compare the execution time of the 

parallel algorithms. 
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 Fig.6: Execution time (in seconds) for  the parallel 
algorithms 

 
In Fig.7 we display the efficiency of the parallel 

algorithms. 
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Fig.7: Efficiency of parallel algorithms 
 
 

6   Conclusions 
The choice of the method for the determination 

of the eigenvalues and eigenvectors of a given 
matrix is not a simple problem. Although Jacobi 
methods are slower than methods that first reduce 
the matrix to tridiagonal form, those are able to find 
all eigenvalues with high relative accuracy when 
the matrix is well scaled. Therefore, Jacobi 
methods are of interest in applications that require 
results with high precision. 

  Moreover, Jacobi methods are better suited for 
parallel implementation on systems with hundreds 
or thousand of processors. One-sided variants 
reduce significantly the communication and may 
become viable in the context of grid computing 
applications that require the computation of 
eigenvalues and eigenvectors of very large dense 
matrices.  

We have considered the parallel implementation 
of two one-sided Jacobi algorithms. One of these 
one-sided methods (method I) is equivalent to the 
standard two-sided method. Method II is faster than 
method I but not as accurate. 

 The block methods are as accurate as the non-
block versions and considerably reduce the 
memory access time.  
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