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Abstract: - Based on the developed third- and fourth-order upwind compact finite difference(FD) schemes, a 
new high-order weighted upwind FD approach, which is called combined compact upwind FD method, is 
proposed for decreasing dispersive(phase) and dissipative errors of the finite difference approximations. The 
newly proposed combined compact upwind FD schemes have the characters of group velocity control scheme 
which can obtain a large group velocity control range. In this paper the optimum combined scheme is proposed 
by applying the dispersion-relation- preserving (DRP) idea. Furthermore a second-order projection algorithm 
which has at least third-order accuracy in spatial direction is developed for solving the incompressible, 
two-dimensional Navier-Stokes equations. Numerical examples are given to validate the performance and 
efficiency of the new projection algorithm proposed. The results show that the present method has desired 
accuracy and resolution. The proposed method can be extended to the solution of the complex fluid flow 
problems. 
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1 Introduction 
The physical phenominon changes in multi scale 
range in the real natrue, so the direct numerical 
simulations(DNS) of multi-scale flow prolem is 
asked to discribe all the scale component in some 
degree respectively so as to simulate the real physical 
phenominon as exactly as possible.  For example, the 
DNS for turbulent and computational 
aeroacoustics(CAA) etc. How to compute the small 
scale (or high wave number) component is the main 
difficults in such problems, which request the finint 
difference(FD) scheme for spatial discretization has 
as low as possible dispersive errors and dissipative 
errors. The low order accurate upwind schemes have 
larger dispersive and dissipative errors, which are 
easy to cause computational instability, and such 
errors become more serious especially in short wave 
range. So People attach more and more importance to 
the high order accurate upwind compact 
schemes[1-5,12], which can decrease the computer 
efforts and memory storages, need a less stencil 
points relatively.  It is obviously that the upwind 
schemes are prefer to approximate hyperbolic 
equations than symmetric ones, so the research of 
such schemes has obtained rapid progress; lots of 
high accurate upwind schemes are developed [1-5]. 
Lele proposed the compact FD schemes[1], which 
have increase the  efficiency to capture the small 

scales, can reach the accuracy as high as spectral 
method. Adopting the thought of group velocity 
control, Ma and Fu [2] developed a kind of schemes 
called group velocity control(GVC) schemes and 
presented the high order accuracy compact difference 
method  which can reflect the real physical flow more 
exactly and computational results of compressible 
mixing layers. Lele [1] proposed the resolving 
efficiency (RE) to weight the advantage or the 
disadvantage of a scheme. If a scheme can decrease 
dispersive and dissipative errors effectively, it can be 
though as a high RE one. Based on this opinion, we 
developed a combined compact upwind(CCU) 
scheme. The present scheme combinate a fourth- 
order compact upwind FD scheme (UCD4) we have 
proposed in Ref. [5] and the third-order ones(UCD3) 
in Ref. [4] with certain weight has at least third-order 
accuracy. The RE of CCUscheme has been improved 
in a certain degree.  
Projection method introduced by Chorin [6] is 
suitable to solving the incompressible NS equations 
and further developed by Bell, et al [7,8] and gived 
the detail anlysis of  perfomance of the Godunov 
projection method. Auterri and Lopez[9,10] 
presented some spectral projection algorithim and 
performed the DNS for some complex fluids flow. 
Fernandez[14] proposed the second-order accurate 
projection method in time . In this paper, a new kind 
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of high order compact FD algorithm basec on 
projection method, which has at least third-order 
accuracy in spatial and second order in time,  is 
designed to solve the incompressible NS equations in 
staggered grid system. Particularly, the new 
fourth-order accuracy FD scheme for approximating 
the pressure Poisson equation and the new explicit 
scheme for solving the pressure gradient are designed. 
At the end of this paper, the computational results 
about Taylor vortex array and driven cavity problem 
are listed. The results show that the present methods 
have desired accuracy and robustness, which are fit 
for directly numerical simulation of complex fluids 
flow problem. 
 
2 Construction of CCU and Accuracy 

Analysis 
The definitions of some difference operators that 
used in this paper are listed below: 
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2.1 Construction of CCU scheme 
Consider the following convection diffusion equation  

auf
x
f

t
u

==
∂
∂

+
∂
∂          ,0 ( 1 ) 

Let be the for the case  and  be the 
case for , then the third-order CCU34 

scheme we proposed is  

+f f 0>a −f
f 0<a

+++ −+= iii FFF )1( σσ ( 2 ) 
−−− −+= iii FFF )1( σσ ( 3 ) 

where
+

iF  ,  +
iF , 

−
iF  and −

iF  can be calculated 
by the following compact upwind schemes   

)45(
2

12 111 +−
++

− ++−
∆

=+ iiiii fff
x

FF ( 4 ) 

)54(
2

12 111 +−
−−

+ +−−
∆

=+ iiiii fff
x

FF ( 5 ) 

iiiiii xSfff
x

FF ∆+−+−
∆

=+ +−
++

− )87(
2

12 111 ( 6 ) 

iiiiii xSfff
x

FF ∆−+−
∆

=+ +−
−−

+ )78(
2

12 111 ( 7 ) 

where ，
±F ±F  and ±F  are the difference 

approximation of the ，  the mesh size, xf ∂∂ ± / x∆
]1,0[∈σ , called 

combination-optimization-controlling parameter, we 
should choose the suitable value of σ  in order to 
improve the RE of CCU scheme as high as possible. 
The formula (4) and (5) are third-order compact 
upwind schemes (UCD3)  presented by Fu and Ma 
(1989) [4] , (6)and (7) fourth-order compact upwind 
schemes (UCD4) presented by us [5].  which note 

the difference approximation of the , is 
calculated by the following  fourth-order Padé 
scheme 
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2.2 The optimum CCU scheme  
We choose 71.0=σ  by employing 
dispersion-relation-preserving (DRP) method[3,12] 
to optimize in this paper.The Fourier accuracy 
analysis [1,2,4] is employed to test the performance 
of CCU scheme. The real part and imaginary part of 
modified wavenumber are response the dispersive 
error and disspastive error of FD scheme, 
respectively. The modified wavenumbers of UCD3, 
UCD4 and CCU scheme are listed below:  
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where 1)k  ,(0  ≥≤≤∆= πωω xk  is 
wavenumber. Variations of and for some 
difference approximations are given in Fig.1 and 2. 
The CCU scheme has largely improved the RE of 

ik rk
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UCD3 and UCD4 in the far smaller error tolrance 
range which can be confirmed in Table1. The 
dissipative error of the CCU scheme is smaller than 
UCD3, but larger than UCD4, which can be found in 
Fig. 2. But the dispersive error is far smaller than the 
UCD3 and UCD4, which are the most important 
characteristics.  The range of well-resolved 
wavenumber may be defined by the error 
toleranceε [1]  

ε
ω

ωω
<

−)(ik
 

where )(ωik is modified wavenumber. Suppose 

fω is the shorest well-resolved wavenumber. The 

fraction πωε /)( fe = may be regarded as a 

measure of the RE of a scheme．We list the 
)(εe of different FD schemes under different error 

toleranceε  in Tabel 1, The results show that the RE 
of  CCU scheme is far higher than that of UCD4, and 
better than UCD3 under the smaller tolerance error  
and wide range of wavenumber. 
 
 
3 Projection Method 
In this paper we consider the non-dimensional time 
dependent incompressible Navierf-Stokes (NS) 
equations of the form 

UpUUU t ∆=∇+∇⋅+
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where  and represent the velocity 
vector and pressure, respectively, Re is the Reynolds 
number. According to projection method [6], the 
firstly, an intermediate velocity is 
introduced and calculated by neglecting the 
contribution of the pressure gradient terms: 

),( vuU = p

),( *** vuU =

nnn
n

UUU
t
UU )(

Re
1*

∇⋅−∆=
∆
− (14) 
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decomposed into the sum of two vectors: 
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The pressure Poisson equation is obtained by 
combining equation (12) and (13) as follows 
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After solving the pressure and pressure gradient, we 
can obtain the velocity fields at time level 1+n  
form equation (12). As we known that this projection 
method  is only the first-order accurate in time, we 
called it one step Euler projection method.  
In order to improve the accuracy, we introduce the 
following second-order accuracy explicit 
predictor-corrector projection method in time[13]. 
Predictor stage: 
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The computing procedure in each stage of  
predictor-correctior method is the  same with one 
step Euler projection method, here we are not going 
to give the more details. 
 
 
4 Discretization of Governing 

Equations 
All the discretization based on staggered grid system. 
The first momentum equation is approximated at 
point ),( 2

1 ji +  in x direction, the second one at the 

point ),( 2
1+ji  in y direction. In discretization of 

the momentum equations, the values u  at point 
),( 2

1+ji and  at v ),( 2
1 ji +  are needed, which can 

be calculated by midpoint interpolation scheme [1]. 
The convection terms are discretized by using CCU 
scheme. For example, the term 
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approximated by CCU scheme (2) and (3), 
respectively. The viscous terms can be discretized 
using formula (8). After discretizing all the 
convection and viscous terms, the intermediate 
velocity  and  at point *u *v ),( 2

1 ji +  and 

),( 2
1+ji  can be calculated by using formula (3), 

respectively. 
The pressure Poisson equation is approximated at the 
point . According to paper [11], the pressure 
Poisson equation can be approximated with the 
following fourth-order compact scheme 
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where x

y  ,  ∆
∆

∆
∆ == γλ y

x . 
In projection method algorithm, before computing 
velocity, we must know the value of the pressure 
gradient at the same point. In staggered grid system, 
as we know above, the pressure gradient component 

 and  are approximated at point xp ∂∂ / yp ∂∂ /
),( 2

1 ji +  and ),( 2
1+ji , respectively. Combined the 

projection techniques, we derivate the following 
explicit schemes to complete such task. According to 
Taylor’s series, we have 
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5 Numerical Examples 
 
In this part, we take into consideration of the 
numerical solutions of NS equations (12) and (13) by 
using the new numerical method presented in this 
paper. 
Example 1  (Taylor’s array) [6]. The problem (12) 
and (13) with the initial conditions are taken as:  
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where  π2y  x,0 ≤≤  and N is an integer. The exact 
solution for this case is known as: 
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Tables 3 and 4 show RMS (root-mean-square) errors 
and rate of convergence Rate (CR) for velocity 
components ,  and vorticity u v ψ  with different 
parameters. The definitions of RMS error and CR can 
be found in paper [14]. It is observed that the whole 
convergence rate of our FD algorithm is at least three. 
Example 2  (driven-cavity) . The problem (12) and 
(13) with the boundary conditions are taken as: 

⎩
⎨
⎧

====
==

0   ,1  ,0   ,0
1          ,1

yxvu
yu

(30) 

This  is a classcial example to test the performance of 
the numerical method, the results given by Ghia[15]  
has been regarded as the benchmark solutions. In 
present paper, we give the results of  
using a 

1000,400Re =
129129×  grid. In Fig.3 and 4, the streamline 

of steady flow has been given. In Fig.5 and 6 we 
present comparisons of the u -velocity along the 
vertical centerline and the v -velocity along the 
horizontal centerline of the square cavity, 
respectively. It is easy to find that the present results 
are coincide with the Ghia’s very well. 
 
 
6 Conclusion 
There are some new characteristics of present method. 
Firstly, the new weighted combined compact upwind 
scheme which has high resolving efficiency and 
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strong dissipation restrain capblity is proposed. Such 
combination methods improve the performance of 
the intrinsic shortcomings of the former schemes. 
Secondly, we proposed the high-order accuracy 
compact difference projection algorithm for 
incompressible NS equations based on the staggered 
grid system. Such algorithm has at least third-order 
accuracy on the whole. The numerical examples 
verify that the present method is fit of DNS of 
complex flows, include the flow problem with large 
gradient and high Reynolds number. 
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Table  1.  Resolving Efficiency of the Schemes Shown in Fig. 1 
Scheme )1.0( =εe  　 )05.0( =εe )005.0( =εe

UCD4[5] 
UCD3[4] 
UCD5[2] 

CCU 

0.660 
0.825 
0.725 
0.795 

0.550 
0.800 
0.635 
0.750 

0.310 
0.345 
0.430 
0.660 

 
Table 3.  RMS errors with the rate of convergence for ψ,,vu at Re=2000, N=2,t=2 
Grid u-error Rate v-error Rate ψ -error Rate 

11×11 
21×21 
31×31 
41×41 
51×51 

6.28241(-3) 
3.91373(-4) 
8.35782(-5) 
2.66855(-5) 
1.09885(-5) 

－ 
4.29 
3.96 
4.08 
4.06 

6.28241(-3) 
3.91373(-4) 
8.35782(-5) 
2.66855(-5) 
1.09885(-5) 

－ 
4.29 
3.96 
4.08 
4.06 

3.01721(-2) 
1.74202(-3) 
3.58175(-4) 
1.14364(-4) 
4.71530(-5) 

－ 
4.41 
4.06 
4.08 
4.05 

                Note:  5.00791(-3)= 5.00791×10-3 etc. 
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Table 3.  RMS errors with the rate of convergence for ψ,,vu at Re=2000, N=2,t=2 

                          

Grid u-error Rate v-error Rate ψ -error Rate 
11×11 
21×21 
31×31 
41×41 
51×51 

6.28241(-3) 
3.91373(-4) 
8.35782(-5) 
2.66855(-5) 
1.09885(-5) 

－ 
4.29 
3.96 
4.08 
4.06 

6.28241(-3) 
3.91373(-4) 
8.35782(-5) 
2.66855(-5) 
1.09885(-5) 

－ 
4.29 
3.96 
4.08 
4.06 

3.01721(-2) 
1.74202(-3) 
3.58175(-4) 
1.14364(-4) 
4.71530(-5) 

－ 
4.41 
4.06 
4.08 
4.05 

Fig.1  Real part of modified wavenumber             Fig. 2  Imaginary part of modifie wavenumber 
 

                  
 

Fig.3 Streamline for Re=400                                     Fig. 4 Streamline for Re=1000 
 

                     
Fig.5 Comparison of u -velocity                             Fig.6 Comparison of -velocity v
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