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Abstract

The optimal control of a distributed system consist-
ing of two Euler-Bernoulli beams coupled in parallel
with pointwise controllers is considered. The optimal
control problem is to minimize a given performance
index over these forces and subject to the equation
of motion governing the structural vibrations, the im-
posed initial condition as well as the boundary con-
ditions. A computationally attractive method by us-
ing finite wavelets for evaluating the modal optimal
control and trajectory of the lumped parameter sys-
tem is suggested. A numerical example is provided
to demonstrate the applicability and effectiveness of
the proposed method.

1 Introduction

Orthogonal functions have received considerable at-
tention in obtaining approximate solutions of dynam-
ical systems [1]. The main idea of this technique is
that it reduces these problems to those of solving a
system of algebraic equations and thus it greatly sim-
plifies the problem. The state and/or control involved
in the equations are approximated by finite terms of
orthogonal series and using an operational matrix of
integration to eliminate the integral operations. The
form of the operational matrix of integration depends
on the particular choice of the orthogonal functions
[1]. In this study, we use wavelet functions to approx-
imate both the control and state functions. It offers
a different approach from the standard variational
method [3] and has the advantage of being attractive
computationally. It avoids the difficult integral equa-

tions created from variational methods by reducing
the problem to solving an algebraic system of equa-
tions, thus providing a computationally more efficient
approach. In addition, solving a system of coupled
initial-boundary-terminal-value problems, a require-
ment for the maximum principle [2], is avoided. In
this study, the sine-cosine wavelets will be used as
they are widely used in many fields of engineering.

The present study deals with the optimal control
of two parallel simply supported beams coupled by
pointwise springs with pointwise controllers applied
along the beams. The basic optimal control prob-
lem is to minimize a given performance index in a
given period of time with the minimum expenditure
of force. Using modal expansion, the optimal control
of a distributed parameter system is reduced to the
optimal control of a lumped parameter system. The
parameterization approach is used to approximate
the state variable and each component of the con-
trol varying using finite-term wavelet with unknown
coefficients. The quadratic problem is then trans-
formed into a mathematical programming problem
with the objective of minimizing the unknown coef-
ficients to obtain suboptimal solution. A necessary
condition for optimality of the unknown coefficients
is derived as a system of linear algebraic equations,
for which the solution is used to obtain the optimal
control force and optimal state function.

To demonstrate the effectiveness of the suggested
approach, a numerical example which simulates the
application of a single actuator on each beam is pre-
sented. Results indicate that the proposed method
significantly minimizes the energy of the system.



2 Optimal Control Problem

Formulation

An elastically connected double-beam system con-
sists of two parallel beams of the same length [
through m-discrete springs with constant stiffness
modulus k; placed at z3,j = 1,2,...,m, as shown
in Figure 1. The transverse vibrations of a double
beam system are governed by the following differen-
tial equations based on the Bernoulli-Euler theory [6]
and the application of pointwise controllers f;;(t) at
n; discrete points 0 < zfy < zfy <...<zf, <l,i=
1 or 2 refers to beam 1 or 2, respectively.

m;02ut (x,t) + K0t (,t)

+(—1)t i k(u' —u?) (25, 0)]0(z — 25)
=1

n;
= Z%J‘fz‘j(t)d(x_xfj)7 (1)
j=1
where (z,t) € Q = Q; x Q; = [0,{] x [0,t],7 =
1,2, 0y and 0, represent the partial derivatives with
respect to the time ¢, and space variable x, respec-
tively.  wui(x,t),i = 1,2 are the vertical displace-
ment of the beams measured from the horizontal
equilibrium positions. The system parameters are
K; = E;I; m; = p;A;, where K; is the flexural rigid-
ity of the beam, F; is Young’s modulus of elasticity,
I; is the moment of inertia of the beam cross-section,
A; is the cross-sectional area of the beam, p; is the
mass density, ¢t is the terminal time, and f;;(¢) is
the amplitude (or the influence) of actuators located
at discrete points zf; € (0,1) for j = 1,2,...n;.The

m

term (—1)iZk:j [ul(xj,t) - u2(x§,t)] §(z — x3) in

equation [1] represents the coupling between the two
beams, where §(z — %) are Dirac distributions with
discrete points 0 < zj < [. For simplicity, the elas-
tic coupling constants, k;, are assumed to be inde-
pendent of the spatial parameter. Associated with
the dynamic model of parallel beams, some appropri-
ate boundary and initial conditions need to be pre-
scribed.

For simplicity of the analysis, all four ends of beams
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Figure 1: A geometric graph of two Euler-Bernoulli
beams

are assumed to be simply supported. The boundary

conditions are:

u'(0,t) =
02ut(0,t) =

u'(l,t) =0
O2ui(l,t) =0,i=1,2, t €

(2)

The initial conditions are

u'(2,0) = up(2), dpu'(w,0) = uj(x) 3)

Consider the set of admissible distributions:

ty
SN O (R HR|/ffj(t)dt<oo,
0

i=1,2, j=1,2,...n;
(4)
In order to measure the performance of the sys-
tem under the influence of the applied control forces
fij(t) € Uaa,for all ¢ and j, we introduce the following
performing index:

T(TF (1)) = Ets) + F(tg) (5)

where
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l
E(ty) = %/ =t dx
o+ Z [0 [Ovu(z,ty)]
=1
1 tr 2 n;
Fty) = §/Z /J’i+4fi2j(t) dt,
o =1 \Jj=1
T = (s fing (@), for(t)s s fons (8)),

where u; > 0, are the weighting constants, which
reflect the relative weighting attached to each term

4
of (5), and Zui # 0. E(tf) is the contributions of
i=1
the modified energies of the double beam, and F'(ty)
represents the contribution of the control energy that
accumulates over the control duration ;.
The optimal control of the double-beam can now
be expressed as

minJ(?) with u’(z,t) is subjected to (2)-(3), (6)

i=1,2.

3 Control Problem in Model-
Space

The distributed parameter system (1) can be trans-
formed into a modal lumped parameter prob-
lem by means of the eigenfunction technique [3].
The functions u’(z,t) can be expanded in terms
of the finite orthonormal eigenfunctions ¢, () =

V2/lsin(Apx), Ap =nw/l.

N
u'(w,t) = Y up (e, () or T(z,t) = 7T (8)F (),

n=1
(7)
where
7(1‘70 = [ul(xat)auz(xat)]Ta
?(t - [u%(t)v"'7U}V(t)7u%(t)v"'7U?V(t)]ngl7

--,@N(x),<,01($),-~-

and T stands for a vector transpose.

Substituting from (7) into equation (1), taking the
dot product of the resulting expression by @(z) and
integrating with respect to x over the spatial domain
Q,, we obtain

i —
%?(t) + D7 () =0 f(t), t€Q =[0,1]. (8)

7¢N(x)]§N><17

where
Donsxany = CH+@°G
onxany = diag [(t?”'yij/mi)QDj(x?j)] ;
i = 1,2, §=1,2,...,n;.
7mx1(t) = [, fin (8), f21 (), -, fany ()]
in which
Conxan = t7 (2)4 diag %
T\ diag % ’
j = 1,2,---,N
Snxem = (t3)diag(ki/mi) ¢ ()],
i = 1,2, 7=1,2,...,m,.
GmxaN = [ Jﬂ] 7[5] ] , M =mn1 + No.
where
¢1(21) on (1)
9] = : :
¢1(z5,) on ()

Since u{(x) and wui(z) are elements of H =
L?(,), one can approximate them with the finite-
dimensional basis {¢;(z)}, of H and thus the
modal initial condition of equation (3) become

u (0) = (uh(a), py(a))q, -
a,(0) = (ul(@).05()),,

t = 1727j:1727"'7N

9)

and the corresponding cost functional (5) in the first
N controlled modes results into

) ( il?_(f(f ) 7) Ry 7;(2)893 >
7 ?(t) — o | HG T ), R T (),
v(70) = st (F(0), BT ()

(10)



where R; =diagu,;], i = 1,2, and j = 0,1,---
and (,) denotes the inner product.

The optimal control problem in modal space can
now be expressed as

7N7

min Jy (?(t)) with 7 (¢) subject to (8)-(9) (11)

where Jy (7@)) is defined in (10).

where
[ atl),o
AsNxp= aé:\,fo
@
?pxl(t) =

2N
a’O r

s0,0(t), s0,1(t), - -
y50,0(t), -

) 50,7'(07
Su,r(t)

T
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(15)

4 Wavelet-base Approach where p = 2(r +1),0 = 26 — 1,7 = 2L,

Upon integrating (8) twice over the finite domain

In this section, a direct method for solving the modal .
Q7, we obtain

control problem (11) by parametrizing the general-

ized state 7 () and control f (t) vectors is developed. ) = T(0)+ ti 7(0)
The modal cost functional Jy (?(t)) of equation ) dt
(10) reduces to a function of unknown parameters _D —
and thus yields an ordinary minimization problem 7 (7)drdi
over R™. 00
t
. + <I>a n)drd 16
4.1 State and control parameteriza- / / T (16)
tion o
Let
Let the orthogonal function series approximations of d
the generalized state variables r;(t) and the control 7(0) = U S (¢), taﬁ(O) =U'S(t) (17)

variables f;;(t), t € Q1 = [0, 1] be given by

where
2L 2k 1 ro,l 7
4 u;(0) 0 -+ 0
D=3 hsum(®) (12) o .
m=0 n=0 .
. uk(0) 0 0
2L 2F—1 Usnxs =
flJ Z Z bnmsnm (13) u%(O) 0 O
m=0 n=0 : : :
where ¢ = 1,2, and j=1,2,---2N and i UN.(O) 0 0 |
@, = (75(t); Snm (), » bt = (Fij(t), s (t))g, — and i -
1 1 Tl
and sy, are orthogonal wavelet functions defined on :
) such as sine-cosine [5] or Legendre wavelets [4]. 574 'ul 0)
In the present study we use sine-cosine wavelets [5]. Ul _ dt =N
Equations (12) and (13) can be written in vector N TT442(0)
notation as follows dt !
- :
()= AF (), f(t)=DB7F(t) (14) | 9T 5uk(0)




in which g is given by [4]

1,0, 0,22 =2 .. =) g
g = 3,0, - 0:@732Q7.. 72L£|
..|2k+1_10 707:Q7:2Q’ 72LQ

Substitute from (14) into (16) and drop 5 () from
it to get the matrix equation
A+Q+ DAP? = o*BP? (18)
where Q = —(UY 4+ U!) and P is the sine-cosine
wavelets matrix, A and B are unknown matrices to
be determined.
Equation (18) can then be written in the form of
vec [7]

vec(A) 4 vec(Q) + vec(DAP?) = vec(®*BP?) (19)

Between the vec and Kronecker product ® [7],
equation (??) can be easily reduced to
[+Bold+7=@a0)b (20
where @ = vec(A) and Y= vec(B) are the r x 2Np-
dimensional state and control unknown parameters.
Moreover ¢ ,x1 = vec(Q) and I' = P2,
Let
X=14+B®T,

Y =3"®T (21)

and use equation (20) to solve the state unknown
parameters b, that is

T=Wo+W (22)

provided that X ~lexists, and where W = Y~'X and
w=-X"17.

4.2 Approximate of modal perfor-
mance index

Refine equations (14) as

T =5, T)=S0) b

(23)

2N x r
®)] .

where the matrix s by

SZNxv'(t) :diag [?T

given
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The relations (23) can be used to approximate the

modal performance index J N(?) given in equation
(10). The resulted approximation, which we shall
—

.denote by Jn,(f), entirely depends on the state

of parameter @. Upon the use of the relation (22),

-
Jn»( f) may be expressed, after some algebraic ma-
nipulations, as

— 1 T -
JN,r(f):§ b Yb+b y1+y2b+oz (24)
where
Y = WTGl(tf)W+G2(tf), ?1 :WTGl(tf)w,
72 BTGl(tf)VV, o= E’TGl(tf)E’
in which
T d d
Gilty) = S (tp)RaS(ty) + 5" () Re S(ty),
1
Go(ty) = tf/ ST(t)R,S(t)dt
0

4.3 Optimality Condition

The necessary condition of optimality can be now ob-
tained by differentiating the performance index (24)
with respect to the unknown vector ? and using the
differentiation properties of [7], that is

0 — —
ﬁJN,r( [)=0=bv =-Q 'y (25)

provided that Q= = (Y + Y7 exists and vector 3/

is defined as ' = %1 + 72 Note that equation (25)
provides necessary conditions, where

52

YL

——Ine(F) = vec (Y +YT) (26)

is a non negative vector which provides conditions
—

for b*,

parameter, respectively.

and c? to be the optimal control and state
Finally the optical control
F(t) and v* (z,t) are obtained in terms of sine-cosine
wavelets series expansion from equations (7).



5 Numerical Example

In this section, we consider the behavior of the con-
trolled beams and compare it with beams on which
no control force is applied. Moreover, the effect of
various problem parameters on the control and mo-
tion of beams are investigated. For simplicity of the
analysis, it is assumed that the double-beam system
is subjected to the initial conditions (3) of the form

u'(z,0) = ¢, (z), dpu'(x,0) =0 (27)

where @, () is the fundamental mode of the system.
In numerical simulations, it is assumed both beams
are geometrically and physically identical. The val-
ues of the parameters used in the numerical calcula-
tions [6]
m; = 1 X 1O3kgm_1, E, =1x 1010Nm_2, I, =
4x107%m?* i =1,2, k; =2x10°Nm~2 and [ = 10m.

Table 1 shows the effect of forces acting on both
beams at the points z§ = x5 = 3.0, ¢ =4.0, 2§ =
8.0, u; =1, 1=1,2,3,4, ps = pg = 0.001, and

ty = 1.

Actuators E(ty) | F(ty)
fi1=0, fo1=0]05285 | 0.0
f11 #0, fo1 #0 | 0.0007 | 0.0161
fi1=0, fo1 #0 [ 0.004 | 0.0388
fi1#0, fo1 =0 | 0.0016 | 0.0244

Table 1: Effect of forces on parallel beams.

It is observed from Table 1 that the system achieves
a substantial reduction in energy when both actua-
tors are applied to both beams.

6 Conclusions

Based on the modal space and the finite terms
of orthogonal wavelets, an attractive computational
formulation for evaluating the optimal control and
state functions of a distributed system consisting of
two Euler-Bernoulli beams in parallel is established.
Compared to the other methods, the formulation is
straightforward and convenient to digital computa-
tion. The main aspect in the nature of this ap-
proach is that it converts the quadratic programming
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problem into a mathematical programming problem
where the necessary conditions of optimality are de-
rived as a system of algebraic equations. A numerical
example is provided to substantiate the theoretical
results.
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