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Abstract: 
Using Monte-Carlo Simulation, I compare the forecasts of returns from the optimal predictor (conditional 
mean predictor) for a symmetric quadratic loss function (MSE) with the pseudo-optimal predictor and 
optimal predictor for an asymmetric loss function under the assumption that agents have asymmetric loss 
functions.  In particular, I use the LINEX asymmetric loss function with different degrees of asymmetry.  I 
generate GARCH(1,1) processes with different persistence levels both with normally distributed errors. 
The results strongly suggest not to use the conditional mean predictor when agents have any kind of 
asymmetry.  The reduction in mean loss by using the optimal versus the pseudo-optimal predictor however 
depends on the degree of asymmetry, and the persistence parameters being used 
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1. Introduction 
  In the literature, a widely used 
forecast evaluation criteria is the MSE, 
which is a symmetric quadratic loss 
function.  MSE penalizes the positive errors 
and negative errors of the same magnitude 
equally.  However, in finance forecasters do 
not necessarily have a quadratic cost 
function1.  

Studies have avoided using general 
asymmetric loss functions mainly because 
most of the time the closed form for the 
optimal predictor does not exist. Granger 
(1969) showed that the optimal predictor 
under asymmetric loss is the conditional 
mean plus a constant bias term. 
Chiristoffersen and Diebold (1997, 1996) 
showed that for conditionally Gausian 
processes if an agent has an asymmetric loss 
function, adding a constant term is not 
sufficient and that time varying second order 
moments become relevant for optimal 
                                                 

1 See Granger (1969), Granger and 
Newbold (1986, p.125) and Stockman (1987). 
 

prediction.  They derived the analytical 
expression for the optimal predictor for two 
specific asymmetric, LINLIN and LINEX 
loss functions.  The LINLIN loss function is, 
first used by Granger (1969), and LINEX 
loss function is introduced by Varian (1974) 
and is used by Zellner (1986).  For more 
general loss functions they showed how to 
approximate the optimal predictor 
numerically. 

I introduce the LINEX asymmetric 
loss function, and the univariate variance 
model I use in Section 2.  Section 3 
Describes the Monte Carlo simulations and 
results.  Section 4 is a conclusion. 
 
2. Univariate Forecasting with 
Asymmetric Loss 
 
2.1. LINEX Loss Function: 
 The LINEX, convex loss function is 
introduced by Varian (1974) and used by 
Zellner (1986).  

+ℜ∈ℜ∈= b      {0},\a        1],-ax-b[exp(ax)   )(xL
The LINEX loss function is approximately 
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linear on negative x-axis and approximately 
exponential on positive x-axis when 0>a .  
The parameter, a, determines the shape of 
the loss function while parameter b scales it.   

Chiristoffersen and Diebold (1997) 
derived the optimal predictor, a pseudo-
optimal predictor and the expected losses 
associated with each, for the LINEX 
asymmetric loss function under the 
assumption of conditional normality.  
Given ),(~| || thtthttht Ny +++ Ω σµ , they 
showed the optimal predictor is 

2
|| )2/(ˆ thtththt ay +++ += σµ , and the pseudo-

optimal predictor is 2
| )2/(ˆ hththt ay σµ += ++ , 

where 2
hσ  is the unconditional h -step ahead 

homoscedastic prediction error variance The 
pseudo-optimal predictor coincides with the 
optimal predictor when 2

|
2

thth += σσ .  
Through out the paper I consider 

1=h , which corresponds to one-step a-head 
prediction.  I consider different degrees of 
asymmetry to compare the loss associated 
with using different predictors.  Specifically, 
I fix 1=b  and change the values of a .  I 
consider cases up to where 10/ =ba .  This 
asymmetric penalization scheme is plausible 
in finance. 
 
2.2 GARCH Models: 

The most commonly used model for 
time-varying volatility is the G/ARCH 
model of Engle (1982) and Bollerslev 
(1986).  A GARCH(1,1) model for the 
return on a financial asset, tr , can be written 

  
)1,0(~  , t IIDzzr ttt ⋅= σ    

                    
(1) 

2
1

2
1

2   −− ++= ttt r σβαγσ   
 

 where 0>γ , 0≥α and 0≥β .  I assume tz  
has finite first and second moments.  For a 
normal GARCH(1,1) model, denoted n-
GARCH(1,1), I assume an independent 
normal innovation.  The return tr  is weakly 
stationary if its variance is finite. This will 

be the case if 1<+ βα .  Since 
2

1
2 )|( tttrE σ=Ι − , where 1−Ι t  is the 

information set available at time t-1, the 
conditional variance 2

tσ  is the minimum 
mean square error predictor of the realized 
volatility 2

tr .  
 
3.  Monte Carlo Simulations: 

In this section I study the 
performance of the optimal, pseudo-optimal 
and conditional mean predictors when 
agents have asymmetric LINEX loss 
function by means of a Monte-Carlo 
simulation.  I look at the average loss ratios 
associated with each predictor for different 
degrees of asymmetry.   

In the Monte Carlo analysis I 
consider two scenarios.  First I consider 
normal GARCH(1,1) with different 
parameter values keeping the “persistence” 
defined as βα + (Bollerslev, 1998) constant.  
I normalize the unconditional variance to 
one.  The  Monte-Carlo simulations  are 
based on 10,000 replications.  I then use the 
simulated n-GARCH(1,1) time-varying 
conditional standard deviations to compute 
the optimal, pseudo-optimal and conditional 
mean predictors for each of the series over 
the forecast period. I use sample size of 50.  
This would represent a situation in which 
one is forecasting weekly data an out-of-
sample period of one year. This is typical in 
empirical work.  In the Monte Carlo study, 
when I compute the optimal, pseudo-optimal 
and conditional mean predictors, I use the 
actual value of th  rather than an estimated 
value.  In empirical work, often the majority 
of the data is used to estimate the parameters 
in the conditional variance, and about ten 
percent of the data is used for the out-of-
sample forecasting exercise.  The GARCH 
(1,1) coefficients, alpha and the beta are 

}10.0,5.0,15.0,3.0{=α , }90,.85,.80,.75,.65{.=β  
respectively.  This case presents the 
performance of the predictors as the alpha 
and beta coefficients vary for a given 
persistence level (.95) and different degrees 
of asymmetry.  This high persistence level 
indicates that market volatility is 
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predictable.  I then compute the average loss 
associated with each predictor and compute 
the average loss ratios and % reduction in 
loss by using one type of predictor versus 
the other.    

Secondly, I change the degree of 
persistence and repeat the same exercise. 
This case shows the sensitivity of the 
performance of the predictors to the level of 
persistence present in the data.  For this case 
I increase the persistence level to .99 by 
keeping }90,.85,.80,.75,.65{.=β  the same but 
increasing the ARCH coefficients. 
 
Fig1. 2.=α , 75.=β , loss ratios from n-
GARCH(1,1). 
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The Figure 1 presents the ratio of 

the average losses between optimal and 
conditional mean predictors and the pseudo-
optimal and conditional mean predictors 
when 2.=α  and 75.=β  for a persistence 
degree of 0.95.  The conditional mean 
predictor performs the worst.  The optimal 
predictor out performs the pseudo optimal 
predictor even when a=1.  The reduction in 
loss is around 30% for values of a equal to 
two and greater.  We see that at a equal to 
five, both lines approach to zero.  This is 
because the conditional mean predictor 
performs so poorly and the average loss 
associated with the conditional mean 
predictor is very large pulling the average 
loss ratio both with the optimal and pseudo-
optimal predictors to zero.  Similar results 
hold for the other simulated series with 
different GARCH(1,1) parameters, the 
conditional mean predictor performs the 

worst, driving the corresponding loss ratios 
to zero.  To avoid this spurious equal 
performance of optimal and pseudo-optimal 
predictors only the average loss reduction 
using the optimal versus the pseudo-optimal 
predictors will be demonstrated in the 
proceeding figures, for different 
GARCH(1,1) models. 
  
Fig 2.  Average % Loss reduction for 
different values of alpha and beta  
coefficients. 
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 Figure 2 presents the average loss 
reduction using the optimal versus the 
pseudo-optimal predictor with different n-
GARCH(1,1) parameters. The percent 
average loss reduction around 8% is 
minimum for  90.=β and  05.=α  for an 
asymmetry level of two and greater.  The 
percent average loss reduction is maximum 
for 0.30=α and 65.=β .  The percent 
average loss reduction is maximum for 

0.30=α and 65.=β .  It is about 20% for 
a=1 and reaches to 50% for values of a equal 
to and greater than three.  We see that the 
percent average loss reduction increases 
with an increasing level of asymmetry and 
decreasing GARCH(1,1) beta coefficient.  
The percent average loss reduction is around 
30% for 2.=α  and 75.=β  when the degree 
of asymmetry is two or greater.  Even for 
low degree of asymmetry the average loss 
reduction is around 20%.  These parameter 
values are very representative of financial 
data.  So a practitioner might expect around 
20% loss reduction using the optimal versus 
the pseudo-optimal predictor for the given 
parameter values.  

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp623-627)



 4

 
Fig.3, Average % Loss reduction for 

,99.=α }90,.85,.80,.75,.65{.=β . 
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 Figure 3 presents the percent loss 
reduction for the n-GARCH(1,1) for a 
persistence level of .99 by increasing the 
values of alpha and keeping 

}90,.85,.80,.75,.65{.=β  as before. As the 
persistence increases we see that the percent 
loss reduction increases as well.  The 
percent average loss reduction that was 8% 
for 90.=β and 05.=α for a persistence level 
of .95 before increases to 70 % for an 
asymmetry level of two and more, for 

90.=β  and 09.=α .  This is very interesting 
because it shows that if you have high 
persistence using the optimal versus the 
pseudo-optimal predictor reduces the loss 
considerably even for low degrees of 
asymmetry and for any GARCH(1,1) 
coefficients typical of empirical work.  
Again the average percent loss  reduction is 
maximum for 65.=β  and 34.=α  reaching 
more then  200% even for low degrees of 
asymmetry.  
 
4. Conclusion 

I consider the mean losses 
associated with using the optimal predictor, 
pseudo-optimal predictor and the conditional 
mean predictor when agents have 
asymmetric LINEX loss function.  

My results provide strong empirical 
evidence to the Granger (1969) and 
CD(1997).  The conditional mean predictor 
performs very poorly compared to the 
optimal and the pseudo- optimal predictors.  
For all series, loss associated with using the 

conditional mean predictor versus using the 
pseudo or the optimal predictor is 
considerably higher even for moderate 
degrees of asymmetry, regardless of the 
different n-GARCH(1,1) parameters.  This 
result suggests that if agents have any kind 
of asymmetry, the conditional mean 
predictor should not be used at all.   

The optimal predictor out-performs 
the pseudo-optimal predictor in all the n-
GARCH(1,1) series considered.  However, 
the percentage reduction in loss is very 
sensitive to the n-GARCH(1,1) parameters 
being used.   

The  average percent reduction in 
loss from using the optimal versus the 
pseudo-optimal predictor increases with 
increasing asymmetry, increasing 
persistence and decreasing beta coefficient.  
For an empirical representative n-
GARCH(1,1) model with parameters 
alpha=0.2, beta=0.75, the average percent 
reduction  is around 20%.  This result 
suggests that when agents have LINEX type 
asymmetric loss function, even for low 
degrees of asymmetry the optimal predictor 
that incorporates the time varying second 
moments must be used. 
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