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Abstract: 
This paper analyzes the loss reduction due to using the optimal predictor in a multivariate 
framework under the assumption that agents have asymmetric loss functions.  A Monte Carlo 
study shows that the achievable loss reduction is in fact considerably greater then the empirically 
realized loss reduction. The results are sensitive to the parameter values being used. 
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1.Introduction 
 Asymmetric loss functions are a 
better fit to explain the agents’ decision 
problems because they take in to account 
the fact that over predictions and under 
predictions of the same magnitude can 
be penalized differently. The optimal 
predictor under symmetric loss is simply 
the conditional mean, the optimal 
predictor under asymmetric loss 
however is not.  This point is made clear 
in Granger (1969), Chiristofferson and 
Diebold (CD henceforth) 1996, and 
1997.  In fact, CD (1996,1997) consider 
two types of asymmetric loss functions, 
linlin and linex, and give the expressions 
for the optimal, pseudo-optimal and 
conditional mean predictors when agents 
have asymmetric loss functions1.  They  
 
                                                 
1 They also point out that the optimal predictor 
for a general loss function might be very hard or 
impossible to obtain in general, since the closed 
expression for the optimal predictor may not 
exist.  For this case they show how to 
approximate it computationally. 

 
conduct a Monte Carlo study to 
demonstrate the likely loss reduction due 
to using the optimal predictor versus the 
pseudo-optimal predictor under the linlin 
loss function, for a univariate variance 
model, the GARCH(1,1). They conclude 
that around 30% loss reduction is 
achievable, due to using the optimal 
predictor versus the pseudo optimal 
predictor when agents have asymmetric 
loss functions.   
 The aforementioned study 
considers a univariate loss function and a 
univariate variance model by 
considering a loss associated with one 
entry at a time.  However, we know that 
in finance, most of the time we are 
interested in the overall loss.  If an agent 
has the same asymmetric loss function 
for all the assets in his portfolio, his 
overall loss will be the sum of his losses 
due to over predictions and 
underpredictions.  Ulu (2005) considers 
this issue and extends the CD (1996, 
1997) to a multivariate framework.  It 
uses illustrative examples from three 
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major exchange rates and three major 
indices.  The results for the multivariate 
case indicate that 8%-10% loss 
reduction, sometimes reaching to 30% 
loss reduction is achievable depending 
on the parameter values of the 
conditional variance covariance matrix.  
Although, Ulu (2005) presents 
illustrative examples, the results are 
subject to parameter uncertainty.  In this 
paper by means of a Monte Carlo 
experiment,  we will demonstrate the 
likely realized loss reductions when we 
know the parameter values rather then 
estimating them.  We consider three 
panels with different variance covariance 
parameters that are likely to be found in 
empirical finance.   In the next section 
we present the LinLin loss function and 
the multivariate variance covariance 
matrix.  We present the Monte Carlo set 
up and the results in section 3.  Finally, 
Section 4 concludes. 
  
2. Univariate Forecasting with 
asymmetric Loss 
2.1. LINLIN Loss Function: 
 
The LINLIN loss function in general for 
h-step a head prediction is written as: 
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where hty + is the realized value of y, 

ht +  periods a head and hty +ˆ  is the 
predicted value of hty + . The ratio a/b 
measures the cost of under predicting 
relative to the cost of over predicting. 
Through  out the paper I consider h=1, 
which corresponds to one step a head 
prediction. 

 CD (1997) gives the expressions 
the optimal predictor, a pseudo-optimal 
predictor for the LINLIN asymmetric 
loss function under the assumption of 
conditional normality. Given 

),(~| || thtthttht Ny +++ Ω σµ , they find 
that the optimal predictor for hty +  is, 
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pseudo-optimal predictor is 
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+ σµ , where 2
hσ  is the 

h -step a head homoscedastic prediction 
error variance and )(zΦ is the N-(0,1) 
c.d.f2.   
 
3. Multivariate forecasting with 
asymmetric loss 
3.1 Multivariate  Loss function 
 Ulu(2005) extends the theory to a 
multivariate framework in which more 
than one series is to be forecasted3 and 
following Zellner (1986), if we assume 
additively separable loss function in the 
n prediction errors.  Then we have the 
following result. 
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Ulu (2005) gives the expressions 
for the optimal, pseudo-optimal and 
conditional mean predictors under 
conditional normality. The optimal 
                                                 
2 However, as CD (1997) point out, the 
conditionally Gaussian assumption can be 
relaxed.  The optimal predictor is obtained by 
substituting the appropriate conditional CDF.  
3 We direct the interested reader to Ulu (2005) 
for detail. 
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predictor vector can be written as 
))/((ˆ 1

,,, iiihtiihtihti baay +Φ⋅+= −
+++ σµ . 

The coefficients ia and ib   might differ 
for each coordinate but all ib ’s are set to 
one and ia ’s are chosen to be the same 
for each coordinate for simplicity.  
 
3.2 Multivariate Variance Models 

A univariate GARCH model can 
be generalized to a n-dimensional 
multivariate GARCH model as 

)N(0,~ | t1 ΣΨ −ttr , where tr  is the n-
dimensional zero mean random variable, 

tΣ  is the variance covariance matrix that 
based on information set available at t-1. 

tΣ   depends on q lagged values of 
squares and cross products of tr and p 
lagged values of tΣ . The extension of a 
univariate GARCH model to a n-
dimensional multivariate GARCH model 
require some restrictions on the 
conditional variance–covariance matrix 
Σ .  There are different 
parameterazations of the variance 
covariance matrix.  We will use BEKK 
model of Engle and Kroner (1995) 
which imposes restrictions on the 
conditional variance-covariance matrix 
(Engle, Kroner, (1995) to ensure positive 
definiteness. 

For the multivariate case I 
estimate the n-diagonal -BEKK 
multivariate GARCH(1,1) model .  The 
BEKK variance model can be written as 

BBAACC tttt 111 −−− Σ′+′′+′=Σ εε . 
  
3.  Monte Carlo Simulations: 
In this section I study the performance of 
three predictors, optimal, pseudo-
optimal and conditional mean predictors 
when agents have asymmetric 
multivariate linlin loss function by 
means of a Monte-Carlo simulation.  I 

look at the average loss ratios associated 
with each predictor for different degrees 
of asymmetry.   
 I use sample size 50 which 
corresponds to forecasting with weekly 
data using an out-of-sample period of 
one year. This is typical in empirical 
work.  In the Monte Carlo study, I use 
the actual values A, B, and C and the 
generated Σ  and the data from the  
normal-BEKK-GARCH(1,1) model  to 
compute the average losses associated 
with each predictor. The Monte Carlo 
experiment is based on 10000 
replications.   
  I consider a set of parameter 
values for A and B, 3X3 diagonal 
matrices.  These values are similar to 
what is found in empirical work. The 
diagonal elements of A, {0.2,0.3,0.4}and 
the corresponding diagonal elements of 
B {0.89,0.95,0.86}.  The results are 
presented in Figures one  
 
  Fig1.   
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 Figure one presents the average 
losses from using the pseudo-optimal 
predictor (opt1) versus the optimal 
predictor (pseudo1) with the parameter 
matrices of A and B.  Clearly 
considerable loss reduction is achievable 
using the optimal predictor that 
incorporates the time varying second 
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moments.  This loss reduction reaches to 
67% for high degrees of asymmetry. 
 
4.Conclusion  
 The average loss reduction due to 
using the optimal predictor versus the 
pseudo-optimal predictor is analyzed for 
a set of parameter values similar to those 
found in empirical work. The simulation 
result demonstrates that incorporating 
the time varying second moments in to 
the predictor reduces the loss up to 68% 
when agents have asymmetric loss 
functions.   
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