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Abstract: - Iterative learning control methods are applied ever-increasingly in control of systems. In recent 
years considerable improvements have been made in theory and application of ILC methods. 
Nowadays ILC’s methods in most academics are described as the methods based on repetitive process from 
beginning to the end, or a kind of repetitive control. 
In this paper a new method based on ILC is represented which is differ from conventional methods of ILC, not 
having repeating property and the system is controlled only once from the beginning to the end of the process. 
By freezing the time and moving in the new virtual axis, called index, our designed method tries to find the 
best value for control at this time step, so it is obvious that this control process is off-line method. 
The mentioned ILC method based on Lyapunov Stability Theorem and by satisfying the convergence 
condition for our designed ILC method, the stability of the closed loop is obtained automatically. 
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1   Introduction 
In the last two decades, iterative learning control has 
been extensively studied, achieving significant 
progress in both theory and application. 
Conventional iterative learning control (ILC) is a 
relatively new control strategy that updates the 
control input to improve the system performance by 
means of system repetition over a finite time 
interval[3][4][5]. 
In this paper, a new type of ILC method is 
represented. Different from conventional methods 
which control a process in finite time repetitively, by 
fixing the time and moving in through the new 
virtual axis, called index, this new mentioned 
method tries to find the best value for control at this 
time step. In this process, using a Lyapunov 
Function and satisfying the condition of Lyapunov 
Theorem the stability of the investigated systems are 
obtained. 
In section 2 problem formulations is represented. 
Section 3 presents our controller designed method. 
Sections 4 discuss our results by showing 
application of our algorithm on some dynamics. And 
finally conclusion is included in section 5. 
 
2   Problem Formulation 
 
In this paper, we focus on the design a controller for 
a class of SISO nonlinear system whose dynamical 
equation can be expressed in the following form: 

 
uXgXfx n )()()( +=                 (1) 

Where ],...,,[ )1( −= nxxxX & , it can also be expressed 
as below; 
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where t is the time ,x(t) is the output variable, 

)1,...,1()( −= nix i
is the ith derivative of x(t), u(t) is 

the input and f and g are known which are uniformly 
continuous respect to x and f(0,t)=0 . 
 
3   Controller Design Method 
 
Lemma: 
 
Suppose real series { } { } 0,0 ≥≥ kkVkkU and 

{ } 0≥kkW  satisfy 

 
a) kVkUkWkU +=+1  

b) 0lim →∞→ kVk  
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c) qkkW >∀<≤ ,1ρ  

 
Where q is a finite positive integer. Then 

0lim →∞→ kUk  
 
Theorem: 
 
Consider the closed loop system (1), with the 
following ILC controller: 
 

)()()(1 teqtutu iii Δ+=+
                      (3) 

 
Where t represents time, i shows the iteration in the 

index axis, u is the controller and 
ieΔ is the 

difference between the derivative of nth state and 
the particular linear combination of all of states in 
the index axis, expressed as below: 
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where iα ’s ( i=1,..,n) comes from the selected 
desired negative matrix Q which is defined as 
follows: 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

=

n

Q

ααα ...
.
.
.

0...0100
0...010

21 , 
 
and q is a constant which is called learning factor. 
Then (1) will be asymptotically stable around the 
origin by the below convergence condition: 
 

1)(1 <+ iXqg
 

 
Proof: 
 
By defining the Lyapunov function as below and 
following the proof procedure, a quoted controller 
will be derived: 
 

XXVXXV TT && =⇒=
2
1

            (5) 

now if we can design a controller which satisfies the 
below relation: 

 
XQX ×=&                                        (6) 

 
where Q is a negative definite matrix in the above 
mentioned form, then (5) changes to: 
 

0<== QXXXXV TT &&                    (7) 
 
Therefore the necessary and sufficient conditions for 
Lyapnunov Theorem are satisfied and the stability of 
system (1) is achieved. 
The relation (6) is expressed again in matrix form as 
below: 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nnn x

x
x

x

x
x

.

.

.

...
.
.
.

0...0100
0...010

.

.

.
2

1

21

2

1

ααα&

&

&

          (8) 

 
According to above equation if only the last row is 
satisfied then all other rows will follow 
automatically which means that the below relation 
should be gratified: 
 

nnn xxxx ααα −−−−= ,...2211&  
 
To establish the last relation our first order ILC 
method is defined and the updating law for its 
controller is introduced as (3). Where in relation (3), 
“i” represents moving in the virtual index axis 
between two sequent step time. In other word, if the 
system is in the time “t”, it is frozen in this time and 
moves to update in index term until the error which 
is defined by relation (4) reaches to the desired 
selected value. 
Now the convergence of our mentioned algorithm is 
evaluated as below: 
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For simplicity the new function h(X) is defined as 
below:  
 

i
nn

iiii xxxXfXh ααα ++++= ,...)()( 2211  
 
and by following the procedure it can be shown that: 
 

)()](1[)(1 iiii XqhuXqgtu ++=+            (9) 
 
If the system is stable then it can be written: 
 
If ),...2,1(,0 niixi i =∀→⇒∞→ , according to 
assumption for f function that 0),0( =tf  it can be 
resulted 0)( →iXh , so according to the above 
mentioned lemma, the algorithm would be 
converged by the below condition: 
 

1)(1 <+ iXqg
 

 
now if the mentioned algorithm converges, the 
relation (7) is satisfied and based on the Lyapunov 
Stability Theorem, the system would be stable. 
 
Remark1: by using the mentioned method and 
according to the Lyapunov Theorem, all of the states 
move to the origin and the stability in view point of 
states are achieved. 
 
Remark 2: our designed method is not only capable 
in such systems as (1), but also any system in the 
form of  

mRunRxutxgtxfx ∈∈×+= ,),(),(
.

 
Which could be converted to system (1) by using 
input-state linearization method. 
 
Remark 3: In view point of sliding mode control, 
the sliding surface is known as a special case of 
lyapunov surface. By using our algorithm, one can 
claim that has found a sliding surface. Consider the 
following relations: 

T
nin xxXcccCCXY ],...[,0],...,[, 11 =≠==

where Ci’s are selected in such a way that CX would 
be hurwitz. 
By defining the Lyapunov function and following 
the procedure below, we will have: 
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Based on the Lyapunov theorem Y moves to the 
origin and 0⎯→⎯CX  so, 

0)1(...)1(
210...11 =−++=++ nxncxcxcornxncxc

 
Because of Y is Hurwitz, then all of the states moves 
to origin. In this case S=CX is called sliding surface 
which has been claimed to find by our method. 
 
Remark 4: this method can be used in online 
control. In this case according to our designed 
method we can write the below relations: 
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where K(s) is our designed controller which is 
defined as: 
 

)()()1( teqtutu Δ+=+  
 
where in the above relation q is a learning factor and 
the corrective term is described as below: 
 

),...()( 2211 nnn xxxxte ααα −−−−−=Δ &  
 
It is obvious that the above relation changes to a 
simple PI controller but in fact our designed 
controller is the combination of the blocks, H(s) and 
K(S) which is distinguished from a PI controller and 
gives us more options for designing. 
By usin the Theories as Small Gain Theorem in the 
closed loop system which is shown in the previous 

G(s) y r K(s) 

H(s) 
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figure, the condition for the stability is achieved, but 
as it is known, this is more conservative theorem. 
 
4   Experimental Results 
Now the results of our designed method are 
illustrated in three nonlinear systems with our 
problem formulation. The results are shown in both 
off-line and on-line cases and following that 
compared with sliding mode control method. 
 
Duffing Equation: 
 
The Duffing equation is described by: 
 

uwtqxxpxpx +=+++ )cos(3
12 &&&  

 
where the parameters p1, p2, q, w are constants. It is 
well known that the Duffing equation exhibits 
chaotic behaviors in certain parameter regions.  
The above dynamical equation can be written as the 
following state equation:  
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Using Sliding mode control: 
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Fig 1- off-line, online, and sliding mode control: states, controller, and 
state space 
 
One-Link Rigid Robot Manipulator: 
 
The dynamic equation of the one-link rigid 
manipulator is given by: 
 

uxgmxdxm =++ )cos(2 l&&&l  
 
Where the link is of length l and mass m, and q is 
the angular position. 
The above dynamical equation can be written as the 
following state equation: 
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Fig 2- off-line, online, and sliding mode control: states, controller, and 
state space 
 
Inverted pendulum: 
 
The dynamic equation of the inverted pendulum is 
given by: 
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Using Sliding mode control: 
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Fig 3- off-line, online, and sliding mode control: states, controller, and 
state space 
 
4   Conclusion 
Achieving a proper Lyapunov function which 
satisfies the condition of the Lyapunov Theorem, is 
the most important factor in the stability of control 
systems. 
In this paper, for a class of nonlinear systems, using 
the ILC method and defining the Lyapunov surface, 
it has been attempted to provide the necessary 
condition for Lyapunov Theorem, and subsequently 
the stability of such systems. 
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