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Abstract: - Saltwater intrusion widely occurs in coastal areas. Therefore, dissolved salts are the most common 
contaminants in freshwater in coastal aquifers and this contamination arises from saltwater invasion, caused 
primarily by human activities due to heavy urbanization. For investigation of the methods of increasing 
storage of fresh ground water and prevention of seawater encroachment, predicting the location and movement 
of the saltwater interface is crucial. Saltwater intrusion problems are so complex and generally cannot be 
analytically solved. Hence, numerical methods are ideal tools for the simulation and prediction of results.  
     In this paper, a two-dimensional finite volume unstructured mesh method (FVUM) based on a triangular 
mesh is developed for analyzing the evolution of the saltwater intrusion into coastal aquifer systems. The 
model formulation consists of a ground-water flow equation and a salt transport equation. Simulation results 
are compared with previously published solutions where good agreement is observed. 
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1   Introduction 
     The seawater intrusion in coastal aquifer has long 
been widely attracting an attention of researchers for 
the management of coastal water resource and 
environment protection. It is worthwhile note that 
human water-use patterns are the most important 
factors for seawater intrusion. Seawater 
encroachment obviously limits the usage of 
groundwater for domestic, agricultural, or industrial 
purposes. Hence, there is a need to predict the 
location and movement of the possible danger of 
contamination fronts. Practical management requires 
knowledge of not only the present response, but also 
of the long-term transient response. For these 
managerial purposes, a numerical model can assist 
in estimating the location of the freshwater/saltwater 
interface for given sets of hydrological conditions.  
     In the past, several numerical models have been 
proposed to simulate the problem of saltwater 
intrusion into aquifers. As early as 1964, Henry 
[1964] developed the first analytical solution for the 
steady-state salt distribution in a confined coastal 
aquifer. In many cases, however, a steady-state 
solution for transient simulations was not obtained 
due to the high computing costs. Segol, Pinder and 
Gray [1975] developed the first transient solution 
based on a velocity-dependent dispersion coefficient 

using the Galerkin finite element method to solve 
the set of non-linear partial differential equations 
describing the movement of a saltwater front in a 
coastal confined aquifer. Numerous other 
researchers, such as Frind [1982], Huyakorn, 
Andersen, Mercer, Harold and White [1987], Voss 
[1984] and Cheng, Strobl, Yeh, Lin and Choi [1998] 
have implemented numerical models for simulating 
saltwater intrusion problems using a variety of 
different methods.  
      The problem of saltwater intrusion into coastal 
aquifers can be formulated in terms of two tightly 
coupled, non-linear partial differential equations. 
The first equation describes the flow of a variable-
density fluid, and the second equation describes the 
transport of dissolved salt. Due to the inherently 
complex boundary conditions and intricate physical 
geometries in any practical problem, an analytical 
solution is not possible. This paper presents a finite 
volume unstructured mesh method (FVUM) for 
modeling saltwater intrusion into aquifer systems. 
The solution domain is tessellated with triangles and 
the control volumes are constructed around the 
triangle vertices. Using this strategy the coupled 
partial differential conservation equations are 
discretised into a system of differential/algebraic 
equations. These equations are then resolved in time. 
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These methods are suitable for intricate physical 
geometries and density-dependent flow and 
transport through saturated-unsaturated porous 
media. Simulation results for two cases of confined 
and unconfined aquifer are presented and compared 
with previously published solutions to assess the 
performance of the newly proposed computational 
model. 

 
 
2   Problem Formulation 
     The problem of seawater intrusion into aquifers 
is governed by a coupled nonlinear system of two 
partial differential equations. The first differential 
equation is the flow equation that describes the head 
distribution in the aquifer of interest. The classically 
used pressure head variable employed in the flow 
equation has been replaced by the use of an 
equivalent freshwater head that generally results in 
the elimination of static quantities and improves 
numerical efficiency.  
     The flow equation for a confined aquifer can be 
written as [Frind, 1982; Huyakorn et al., 1987]:  

( )[ ]zChK
t
hSs ∇+∇∇=
∂
∂ η.                                     (1) 

Where h  is the reference hydraulic head referred to 
as the freshwater head; K  is the hydraulic 
conductivity tensor;   η  is the density coupling 
coefficient; C  is the solute concentration; sS  is 
the specific storage; t  is time; z  is elevation.  
     The reference head and the density coupling 
coefficient in (1) are defined as  

z
g

ph +=
0ρ

                                                         (2) 

maxC
εη =                                                                (3) 

Where P  is the fluid pressure; g  is the 
gravitational acceleration; maxC  is the 
concentration that corresponds to the maximum 
density maxρ  ; ορ  is the reference  (freshwater) 
density; ε is the density difference ratio defined as  

1
0

max −=
ρ
ρ

ε                                                          (4) 

ρ  is the density of the mixed fluid (fresh water and 
saltwater) and the relationship between fluid density 
and concentration under isothermal conditions is 
expressed as:  

)1()1( 00 rC ρρηρρ +=+=                              (5) 

Where rρ  is the relative density.   

      The other differential equation is the transport 
(dispersion) equation, which is used to describe the 
chemical concentration. To describe salt transport, 
we use the following form of the advective-
dispersive equation:  

( ) ( )CVCnD
t
Cn .. ∇−∇∇=
∂
∂                                    (6) 

Where n  is porosity and D  is the dispersion tensor, 
whose terms, according to Bear [1979], are defined 
in a two-dimensional x - z coordinate system as:  
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Where Lα  and Tα  are the longitudinal and 
transverse dispersivities respectively, mD  is the 
molecular diffusion coefficient, and τ  is tortuosity. 
The Darcy velocity vector and linear velocity can be 
expressed as 

( )zChKV ∇+∇−= η                                         (10) 
nVv /=                                                               (11) 

     To obtain a unique solution to (1) and (6), initial 
and boundary conditions must be specified. 
     For the flow equation, the initial condition may 
be expressed as  

),()0;,( 0 zxhzxh =  In  R                                   (12) 
Where R  is region of interest; 0h  is the initial 
head. 
     The boundary conditions may be stated as 
follows.  
Dirichlet boundary condition:  

);,();,( tzxhtzxh dbb =   In  dB                          
(13) 
Neumann boundary condition:  

);,(. tzxVnV bbni =   In  nB                                 (14) 
where in   is the outward unit vector normal to the 
boundary; ),( bb zx  is a spatial  coordinate on the 
boundary; dh  and nV  are the Dirichlet functional 
value and Neumann flux, respectively. 
     For the transport equation, the initial condition 
may be expressed as  

),()0;,( 0 zxCzxC =  In  R                                 (15) 
     The boundary conditions may be stated as 
follows.  
Dirichlet boundary condition:  
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);,();,( tzxCtzxC bbdbb =   In  dB                     
(16) 
Neumann boundary condition:  

);,().( tzxVCnDn bbni =∇−   In  nB                   (17) 
Cauchy boundary conditions:  

);,().( tzxVCnDCVn bbci =∇−  In  cB            (18) 
Where dC , nV  and cV  are the Dirichlet functional 
value, Neumann flux and Cauchy flux, respectively. 
 
 
3   Problem Solution 
     During the last twenty years there has been a 
strong focus upon the utilization of the Finite 
Volume (FV) or Control Volume (CV) approaches 
for solving fluid flow  and heat transfer problems or, 
as it is more generally known, problems in 
Computational Fluid Dynamics (CFD). This success 
is mostly due to the conservative nature of the 
scheme and the fact that the terms appearing in the 
resulting algebraic equations have a specific 
physical interpretation. In fact, the straightforward 
formulation and low computational cost compared 
with other methods have made CV the preferred 
choice for most CFD practitioners. Over the last ten 
years, several control volume based-unstructured 
mesh (FVUM) approaches have in many way 
overcome the structured nature of the original 
control volume method. 
     In general, the FVUM methods can be 
categorized into two approaches, namely, vertex-
centered or cell-centered. The classification of the 
approach is based on the relationship between the 
control volume and the finite element like 
unstructured mesh. The approach described here is 
the vertex-centered, which is more generally known 
as the Control Volume based Finite Element Mesh 
method. In a discrete solution procedure, the 
solution domain is subdivided into smaller regions 
and nodes are distributed throughout the domain, the 
connections between the nodes and the sub-regions 
are known as a mesh. In a finite element mesh, the 
sub-regions are called elements, with the vertices of 
the elements being the nodal locations. For the 
vertex centered approach only the basic elements, 
which triangles with three nodes are considered.  
     In the solution domain, each node is associated 
with one control volume. Each surface of the control 
volume is defined as the vector that joins the 
centroid of an element to the centroid of the adjacent 
one as shown in Figure 1. Consequently, each of the 
triangular elements is divided into three by these 
control surfaces (CS). Each control volume consist 
of some triangular shapes, called sub-control 

volumes (SCV) and are illustrated in Figure 2. Thus, 
a control volume consists of the sum of all 
neighboring SCVs that surround any given node. 
The CV is polygonal in shape and can be assembled 
in a straightforward and efficient manner at the 
element level. The flow across each control surface 
must be determined by an integral. The FVUM 
discretisation process is initiated by utilizing the 
integrated form of the equation. (1) and (6). 
Integrating the flow equation (1) and the transport 
equation (6) over an arbitrary control volume yields: 

( )[ ]∫∫ ∇+∇∇=
∂
∂

vv
s dvzChKdv

t
hS η.                     (16) 

( ) ( )dvCVdvCnDdv
t
Cn

vvv
∫∫∫ ∇−∇∇=

∂
∂ ..          (17) 

 

 
Figure 1: Construction of a control volume from 
triangular finite element and sub-control volumes 

 
     Applying the Gauss divergence theorem to the 
right-hand side of equation (16), (17) and using a 
lumped mass approach for the time derivative term 
gives  
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n ..               (19) 

Where dn  represents the components of the 
outward normal surface vector to the control surface 
S and an anticlockwise traversal of the finite volume 
integration is assumed, i.e., dn can be approximated 
in the discrete sense by kxizdn

))
∆−∆= ; x∆ and 

z∆  represent the x  and z  components of the SCV 
face; pv  is the area of the control volume, and is 
evaluated for the vertex case as  

∑
=

=
pscv

i

N

i
scvp vv

1
                                                     (20) 

where, pscvN is the total number of SCV’s that make 
up the control volume associated with the node p .  
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     The integrals in equations (18) and (19) are line 
integrals. These integrals will be approximated by 
the midpoint approximation for each control surface. 
To effect this midpoint approximation, the argument 
of the integrals is required at the midpoint of the 
control surface and it is for these surfaces that the 
outward normal vector will be required.  The 
integral in equation (18) can be rewritten as  
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Using the Gauss Divergence theorem, 
x
h
∂
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z
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in center of each element is written: 
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Where ee.Ω  represents the area of each element. C 
in center of each element is evaluated with: 

∑
=

=
3

13
1

i
iCC                                                          (23) 

The first integral of the right hand side in equation 
(19) can be rewritten as 
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The second integral of the right hand side in 
equation (19) can be rewritten as:  
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Using the Gauss Divergence theorem 
x
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in center of each element are: 
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The components of the dispersion tensor will be 
approximated as  
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     In order to stablizing the numerical solution, time 
step is restricted by: 

min
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⎠
⎞⎜

⎝
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zzxx

ns
kk

St                                  (32) 

Where nΩ  is area of each control volume and xxk  
and zzk  are hydraulic conductivity in x  and z  
direction. 
     In order to solve the resulted ordinary differential 
equations, the boundary conditions must be treated 
numerically. After assembling the nodal control 
volume equations, complete conservation equations 
will exist for all interior control volumes.  
     However, at solution boundaries, the 
corresponding control volume will have two control 
surfaces for which boundary conditions must be 
applied to complete the equations for conservation. 
Figure 2 illustrates sub-control volumes for a 
triangular element where two of its sides form part 
of the solution domain boundary. For evaluation of 
boundary conditions along these sides it is necessary 
to integrate the corresponding boundary control 
surfaces (BCS) as shown in Figure 2. 
 

 
Figure 2: Boundary element, boundary control surface 

and boundary control volume 
 
 
4   Numerical Simulation 
     To verify the above described numerical model, 
two examples are considered, for which numerical 
modeling results are available. These examples 
describe density-dependent flow and transport 
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through porous media in confined and unconfined 
aquifer which can be used for verification of our 
numerical model.  
 
 
4.1 Confined Aquifer simulation 
     This example concerns groundwater flow and salt 
transport in a coastal confined aquifer. This example 
is known as Henry [1959] problem which is 
described schematically in Figure 2. The transient 
analyses were performed. The parameters were 
chosen so that the analyzed cases correspond to 
those numerically solved by other researchers. The 
boundary conditions employed in present numerical 
simulation are also shown. in Figure 3. 
 

 
Figure 3: Problem description of saltwater intrusion in a 

coastal confined aquifer [9] 
 

     The aquifer under consideration is a uniform 
isotropic aquifer that is bounded below and above 
by impermeable strata. In addition, the aquifer is 
exposed on the right side by a stationary saltwater 
body and is recharged on the left side by a constant 
freshwater influx. The coastal boundary condition 
allows convective mass transport out of the system 
over the top portion ( )mzm 10080 ≤≤ . Thereupon, 
the normal concentration gradient is set equal to 
zero. The initial concentration and reference 
hydraulic head were set to zero. 
     The aquifer region is represented by a two-
dimensional triangular unstructured mesh consisting 
of 842 triangular elements and 482 nodes as shown 
in Figure 4. 

 
Figure 4: A two-dimensional unstructured mesh of coastal  

confined aquifer 
 

     Two cases of variable dispersion and constant 
coefficients were selected. 
     For the variable dispersion case, mD  was set to 
zero and the longitudinal and transverse 
dispersivities Lα  and Tα  were set to 3.5m.  
     Figure 5 shows the 0.5-isochlor distributions 
using FVUM for the steady state. It is apparent from 
Figure 5 that the present analyses are in good 
agreement with those of Cheng et.al [1998], 
Huyakorn et al. [1987] and Frind. [1982].  
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Figure 5: The 0.5-isochlor distribution for steady state, 

variable dispersion case 
 

     Salt concentration distribution and head 
distribution in variable dispersion case are shown in 
Figure 6 and 7. 
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Figure 6: Salt concentration distribution, for steady state, 

variable dispersion case 
 

     For the constant dispersion case, the molecular 
diffusion coefficient mD  was set equal to 

dm /10*6.6 22− , and Lα  and Tα were set to zero.  
     Figure 8 shows the 0.5-isochlor distributions 
using FVUM for the transient state at t=6000 days 
for the constant dispersion case. It can be observed 
from these figures that the results are in satisfactory 
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agreement with previously published solutions 
[Huyakorn et al., 1987; Frind, 1982; Cheng et al., 
1998 and Liu et al.2001]. 
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Figure 8: The 0.5-isochlors distribution for transient state 

at t=6000 days, constant dispersion case 
 
Salt concentration distribution and head distribution 
in constant dispersion case are shown in Figure 9 
and 10. 
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Figure 9: Salt concentration distribution for transient state 

at t=6000 days, constant dispersion case 
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Figure 10: Head distribution for transient state at t=6000 

days, constant dispersion case 
 

4.1 Unconfined Aquifer simulation 
     This example involves an anisotropic unconfined 
aquifer that is recharged by freshwater from top and 
from landward side and invaded by saltwater on the 
coastal side. The saturated thickness is assumed to 
be 50 m. In addition, the top boundary of pheriatic 
aquifer, which is free surface, is assumed to be fixed 
at an elevation of 50 m above the base of aquifer. 
Although this approximate assumption of  the free 
surface conditions may seem unreasonable at first 
glance, it can be considered a conceivable 
assumption for this particular problem because the 
maximum rise in the water table because of  
recharge is not expected to exceed but a few percent 
of initial saturated thickness of 50 m (Huyakorn et 
al. 1987). 
     This unconfined aquifer is schematically shown, 
in Figure 11. The steady-state analyses were 
performed. The parameters were chosen so that the 
cases analyzed correspond to those solved 
numerically by other researchers. The boundary 
conditions employed in presented numerical 
simulation are also shown in Figure 11. 

 
Figure 11: Problem description of saltwater intrusion in a 

coastal unconfined aquifer [2] 
 

The initial concentration and reference hydraulic 
head were set to zero.  
     The aquifer region was represented by a two-
dimensional triangular unstructured mesh consisting 
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of 265 triangular elements and 428 nodes as shown 
in Figure 12. 
 

 
Figure 12: A two-dimensional unstructured mesh of 

coastal unconfined aquifer 
 
     For steady-state analysis, the longitudinal and 
transverse dispersivities Lα  and Tα  were set to 10m 
and 5m.  
     Figure 13 shows the 0.5-isochlor distributions 
using FVUM for the steady state. It is apparent from 
Figure 13 that the present analyses are in good 
agreement with those of Cheng et.al [1998], Galeati 
et al. [1987]. 
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Figure 13: The 0.5-isochlor distribution for steady-state in 

unconfined coastal aquifer 
 

Salt concentration distribution and head distribution 
in unconfined coastal aquifer are shown in Figure 14 
and 15. 
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Figure 15: Salt concentration distribution, for steady state, 

in unconfined coastal aquifer 
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Figure 16: Head distribution, for steady state, in 

unconfined coastal aquifer 
 

 
Conclusion 
     In present work, a 2D numerical model based on 
finite volume unstructured mesh (FVUM) method is 
developed for evaluating saltwater intrusion. 
Presented model solve a flow equation that describes 
the head distribution in the aquifer of interest and an 
equation for transport and dispersion of a 
concentration (i.e. salt). The model solves two 
equations in a coupled manner explicitly. The model 
can predict salt concentration distribution in coastal 
aquifers. In order to verify the model results, 
Henry’s [1959] problem and Huyakorn’s [1987] 
problem solved and results of salt concentration 
distribution are compared with the results of other 
researches. Acceptable agreement between the 
results of the present simulation and previous results 
are encouraging. 
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