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Abstract: A framework for solving a class of nonlinear programming problems via the filter method is presented.
The proposed technique first solve a sequence of quadratic programming subproblems via line search strategy
and to induce global convergence, trial points are accepted provided there is a sufficient decrease in the objective
function or constraints violation function. In the event when the step size has reached a minimum threshold
such that the trial iterate is rejected by the filter, the algorithm temporarily exits to a trust region based algorithm
to generate iterates that approach the feasible region and also acceptable to the filter. Computational results on
selected large scale CUTE problems on the prototype code filLS are very encouraging and numerical performance
with LOQO and SNOPT show that the algorithm is efficient and reliable.
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1 Introduction
This paper concerns the development of an alternative
filter algorithm for finding a local solution of the fol-
lowing Nonlinear Programming (NLP) problem

P

{
minimize

x∈Rn
f(x)

subject to ci(x) ≤ 0 i = 1, 2, . . . ,m

where we assume f : R
n �→ R and c : R

n �→ R
m are

twice differentiable.

In the paper by Fletcher and Leyffer [6] the au-
thors have proposed solving Problem P using a filter
method as an alternative to traditional merit function
approaches. The underlying concept is fairly simple
where trial points generated from solving a sequence
of trust region quadratic programming (QP) subprob-
lems are accepted provided there is a sufficient de-
crease in the objective function or constraints viola-
tion function. Furthermore extension of the filter tech-
nique to accommodate trust region Sequential Lin-
ear Programming (SLP) methods have also been re-
ported in [3] where methods have been adapted to al-
low the possibility of taking equality based quadratic
programming subproblem (EQP) steps. Besides trust
region methods, extension of optimization techniques
using the filter strategy can be found in derivative-free
optimization approach [1], bundle method for non-
smooth optimization [5], interior point approach [9]
and line search approach [10].

In view of the latest development in using the fil-
ter strategy in nonlinear programming we also dis-
pense with the idea of using merit functions to induce
global convergence in algorithms for NLP. Instead
of purely focussing on trust region methods in NLP,
we on the other hand propose and analyze an alter-
native filter strategy framework based on line search
and trust region methods. It has been known that
line search methods incorporating merit functions can
converge to singular non-stationary points if the Jaco-
bian matrix of active linearized constraints are linearly
dependent at non-stationary points. In the context of
a filter line search method, if the trial steps become
too small when utilizing backtracking strategy then
the filter algorithm will temporarily exit and enter into
feasibility restoration phase [6]. The main objective
of entering the feasibility restoration phase is to get
closer to the feasible region by minimizing the con-
straints violation function. By using such a strategy
it is hoped that the point generated from the feasibil-
ity restoration phase is acceptable to the filter and for
which the QP subproblem is feasible. Take note that
the purpose of this paper is to deal with the aspects of
the proposed method as they relate to the algorithmic
implementation. As for addressing the global as well
as local convergence aspects of this method see [4].

To give a detailed treatment of this study, we or-
ganize this paper in the following manner. In Section
2 we begin by introducing the filter method and we
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will also show how it can be adapted in a line search
SQP algorithm. In addition we will discuss the “slant-
ing” filter technique which first featured in [3] so that
stronger statements about convergence to a feasible
point can be made. In this section also we will discuss
the role of the feasibility restoration phase and how it
is augmented in the filter algorithm. In Section 3 the
implementation details of the prototype code filLS are
discussed and we also present the numerical results
by comparing the performance of filLS, LOQO and
SNOPT on selected test problems. Finally in Section
4 we conclude the paper.

2 The Filter Line Search Algorithm

We consider solving Problem P iteratively and in or-
der for our algorithm to obtain second order conver-
gence of the iterates, one of the most attractive choices
is to use Sequential Quadratic Programming (SQP)
method as the basic iterative method. At the current
iterate xk, where k is the iteration number, the QP
subproblem in our algorithm is defined by

QP (xk)

⎧⎪⎨⎪⎩
minimize

d∈Rn
∇f(xk)Td + 1

2d
TWkd

subject to ∇ci(xk)T d + ci(xk) ≤ 0,
i = 1, 2, . . . ,m

and we denote the local minimizer, the QP step as dk

(if it exists). After dk has been computed, a step size
α ∈ (0, 1] is determined in order to obtain a trial iter-
ate

x = xk + αdk.

As in line search strategy the step size α is chosen
via a backtracking strategy so that x satisfies the filter
requirements. If x satisfies filter conditions we then
set xk+1 = x and αk = α.

On the other hand if the QP step is rejected by
the filter for some α ∈ (0, 1] and to overcome the
difficulties associated with the Maratos effect, we then
construct a second order correction (SOC) step. By
adapting of an idea used by [8] we first calculate a step
d̃k (if it exists) from solving the following modified
QP subproblem

Q̃P (xk)

⎧⎪⎪⎨⎪⎪⎩
minimize

ed∈Rn
gT

k d̃ + 1
2 d̃

TWkd̃

subject to ∇ci(xk)T d̃ + ci(xk + dk)
= −‖dk‖ν , i ∈ A(xk)

where gk = ∇f(xk) + Wkdk, ν ∈ (2, 3) and
A(xk) = {i : ∇ci(xk)Tdk+ci(xk) = 0}. Using the

inherited step size value α ∈ (0, 1] from the previous
trial iterate xk + αdk , we then utilize the SOC step
dk + d̃k where for some α ∈ (0, 1] we set

x = xk + αdk + α2d̃k

and then subject x to the required filter test. If the new
trial iterate x satisfies all the filter conditions we then
set xk+1 = xk+αdk+α2d̃k and αk = α. However, if
the new trial iterate fails to be accepted by the filter we
then reduce the step size α via a backtracking strategy
and return to test the QP and subsequently SOC steps
again until either xk + αdk or xk + αdk + α2d̃k sat-
isfies the filter requirements or temporarily exits from
the main filter algorithm to the feasibility restoration
phase.

Using the technique as in trust region methods we
let the actual reduction in f(xk) as

∆f = f(xk) − f(xk + αdk)

if QP step is used or

∆f = f(xk) − f(xk + αdk + α2d̃k)

if SOC step is used. Furthermore we let

∆l(α) = −α∇f(xk)Tdk

as the linear reduction in f(xk). Our sufficient reduc-
tion condition for f(xk) then takes the form

∆f ≥ σ∆l(α)

where σ ∈ (0, 1
2) is a pre-assigned parameter. In some

ways the sufficient reduction test resembles the use of
Armijo line search condition for unconstrained opti-
mization problems.

We now turn our attention to the definition of an
NLP filter introduced in [6]. Basically in nonlinear
programming there are two competing aims to sat-
isfy that is to minimize f(x) and to minimize h(c(x))
where

h(c(x)) =
m∑

i=1

max{0, ci(x)}.

Note that in this paper we would use the above for-
mulation as a measure of constraint infeasibility. The
pair (h(c(xi)), f(xi)) is said to be acceptable for in-
clusion in the filter if either

h(c(xi)) < h(c(xj)) or f(xi) < f(xj)

for all j ∈ F(k) where F(k) denotes the set of itera-
tions indices j (j ≤ k) such that (h(c(xj)), f(xj))
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is an entry in the current filter. Hence a filter is a
list of pairs (h(c(xi)), f(xi)) such that no pair dom-
inates any other where domination in our definition
means h(c(xi)) ≤ h(c(xj)) and f(xi) ≤ f(xj) for
i, j ∈ F (k).

For the purpose of proving convergence [4], the
present definition of a filter is inadequate as it allows
points to accumulate in the neighbourhood of filter en-
tries that are not Kuhn-Tucker points. This is read-
ily corrected by defining a small “slanting” envelope
around the current filter entries. In our test, the trial
iterate xi is acceptable to the filter if either

h(c(xi)) ≤ (1 − η)h(c(xj)) (2.1)

or

f(xi) ≤ f(xj) − γh(c(xi)) (2.2)

for all j ∈ F(k) where η ∈ (0, 1), γ ∈ (0, 1) are
parameters close to zeroes. This idea is illustrated in
Figure 1 using values η = γ = 0.1 although in prac-
tice η and γ are close to zeroes.

�

�

h(c(x))

f(x)

•

•

•

Figure 1: An NLP filter with “slanting” envelope
strategy

Apart from using conditions (2.1)-(2.2) we also
impose an upper bound criteria

h(c(x)) ≤ (1 − η)u

where u > 0 on any filter entries and this is readily
implemented by initializing the filter with the entry
(u, -∞).

In response to the new developments we now state
the filter acceptability test in a clearer context. For a
trial iterate x = xk + αdk for some step size α > 0,
the point x is said to be acceptable to the filter if the
two conditions given below hold true

(1) h(c(x)) ≤ (1 − η)h(c(xj)) or f(x) ≤ f(xj) −
γh(c(x)) for all filter entries j ∈ F(k).

(2) h(c(x)) ≤ (1 − η)u.

Following the above definitions and explanation, we
are now in a position to state the filter line search SQP
algorithm by means of the following pseudo-code.

Filter Line Search SQP Algorithm

Given initial point x0, t ∈ (0, 1), set σ ∈ (0, 1
2 ), η ∈

(0, 1), γ ∈ (0, 1) and set the iteration index k := 0. If
h(c(x0)) 	= 0 let k ∈ F(k). Set (u,−∞) in the filter.
REPEAT

Solve QP (xk) subproblem to obtain a local min-
imizer dk.

Set α = 1 and

αmin

⎧⎨⎩
= 0 if h(c(xk)) = 0,
∈ (0, h(c(xk))2) if h(c(xk)) ∈ (0, 1),
∈ (0, 1) otherwise.

IF QP (xk) is infeasible THEN
Goto Feasibility Restoration Phase to find xk+1

so that it is acceptable to the filter and the
QP (xk+1) subproblem is feasible.

ELSE
REPEAT

IF xk +αdk is acceptable to the filter THEN
IF ∆l(α) > 0 and ∆f < σ∆l(α) THEN

• Set α := αt.
ELSE

• Set αk = α, ∆fk = ∆f ,
∆l

(α)
k = ∆l(α).

• Set xk+1 = xk + αkdk.
• If h(c(xk+1)) > 0 then initially set
F (k+1) = F (k) ∪ {k + 1} and
remove any points from the filter
that are dominated by
(f(xk+1), h(c(xk+1))).

ENDIF
ELSE

Solve Q̃P (xk) subproblem to obtain a
local minimizer step d̃k (provided the
subproblem is solved for the first time).
IF Q̃P (xk) is infeasible THEN

• Set α := αt.
ELSE

IF xk + αdk + α2d̃k is acceptable to
the filter THEN

IF h(c(xk)) = 0 THEN
IF ∆l(α) > 0 and

∆f < σ∆l(α) THEN
• Set α := αt.

ELSE
• Set αk = α, ∆fk = ∆f ,
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∆l
(α)
k = ∆l(α).

• Set xk+1 = xk + αkdk+
α2

kd̃k.
• If h(c(xk+1)) > 0 then set
F (k+1) = F (k) ∪ {k + 1}

and remove any points from
the filter that are dominated
by (f(xk+1), h(c(xk+1))).

ENDIF
ELSE

• Set αk = α, ∆fk = ∆f ,

∆l
(α)
k = ∆l(α).

• Set xk+1 = xk + αkdk+
α2

kd̃k.
• If h(c(xk+1)) > 0 then set
F (k+1) = F (k) ∪ {k + 1}
and remove any points from
the filter that are dominated by
(f(xk+1), h(c(xk+1))).

ENDIF
ENDIF

ENDIF
ENDIF

UNTIL α < αmin or xk+1 is found.
ENDIF
IF α < αmin THEN

Goto Feasibility Restoration Phase to find xk+1

so that it is acceptable to the filter and the
QP (xk+1) subproblem is feasible.

ENDIF
Set k := k + 1.

UNTIL convergence criterion is met.

From the pseudo-code, at every iteration k there is
an inner loop in which backtracking strategy is used,
where decreasing values of α are generated. The inner
loop terminates when the algorithm satisfies either one
of the following scenarios:

(a) the trial point xk + αdk or xk + αdk + α2d̃k is
accepted to be a new iterate;

(b) the step size α < αmin.

Furthermore our algorithm also provides an outlet if
the current QP (xk) subproblem is infeasible or if the
backtracking strategy fails to improve either the ob-
jective function or the constraints violation function
values. We do this by exiting the algorithm temporar-
ily and enter into a feasibility restoration phase where
the main purpose is to reduce the constraints infeasi-
bility. The whole process terminates if the restoration
phase finds a point that is both acceptable to the filter,
and for which the QP subproblem is feasible.

The main crux of our feasibility restoration phase
is to solve a norm minimization problem of the form

H
{

minimize
x∈Rn

h(c(x))

where Problem H is a non-smooth optimization prob-
lem. To promote global convergence and also fast lo-
cal convergence of iterates, following [7] in the de-
velopment of a Sequential Non-Smooth Programming
(SNQP) method, our strategy solves the following QP
subproblem at every iteration

Q̂P (xk)

{
minimize

d∈Rn
l(d) + 1

2d
TBkd

subject to ‖d‖∞ ≤ ρ

where xk denotes the k-th iterate, d is a displacement
vector, l(d) = h(c(xk) + ∇c(xk)T d), Bk is an ap-
proximation of the Hessian of the Lagrangian and ρ is
a trust region radius.

As in all trust region based methods we define

∆h = h(c(xk)) − h(c(xk + d))

as the actual reduction in h(c(xk)), and let

∆q = h(c(xk)) − h(c(xk) + ∇c(xk)Td) −
1
2
dTBkd

be the quadratic predicted reduction in h(c(xk)). In
order for the trial step xk + d to be accepted by the
algorithm, we require it to satisfy the simple sufficient
reduction condition

∆h ≥ ζ∆q

where ∆q ≥ 0 for a suitable positive-definite Bk and
ζ ∈ (0, 1) is a pre-assigned parameter. Given all the
necessary definitions, we are now in a position to state
the trust region feasibility restoration phase by means
of the following pseudo-code.

Feasibility Restoration Phase
Given xk, set ρmin > 0, ζ ∈ (0, 1) and ρ ≥ ρmin .
Set V(xk) = {i : ci(xk) > 0} and V⊥(xk) =
{i : ci(xk) ≤ 0}. Stop if V(xk) = ∅ (all constraints
are feasible) and return to filter line search SQP algo-
rithm.
REPEAT

Solve Q̂P (xk, ρ) subproblem to obtain a local
minimizer d.
IF ∆h < ζ∆q THEN
• Set ρ := 1

2ρ.
ELSE
• Set d̂k = d, ρ

k
= ρ, ∆hk = ∆h, ∆qk = ∆q.
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• Set xk+1 = xk + d̂k.
• Set V(xk+1) = {i : ci(xk+1) > 0} and
V⊥(xk+1) = {i : ci(xk+1) ≤ 0}.

• Set ρ =
{

ρ
k

if ‖d̂k‖∞ < ρ
k
,

2ρ
k

otherwise.
• Set ρ ≥ ρ

min
if ρ < ρ

min
.

• Set k := k + 1.
ENDIF

UNTIL xk is acceptable to the filter or convergence
criterion is met.

Note that in the restoration phase there is always
a possibility that the restoration phase might fail to
terminate and converge to an infeasible point. An ex-
ample of this behaviour could happened if there exists
a non-zero local minimum of h(c(x)) which indicates
that the original problem P is locally infeasible. On
the other hand, if the restoration phase is converging
to a feasible point then due to the filter acceptance test
it is usually likely that the restoration phase will ter-
minate and returns back to the main filter algorithm.

3 Numerical Performance of filLS

In this section we describe the performance of our
code filLS and the following are the details regarding
the implementation of the algorithm:

• The code filLS has been implemented in C++
with double precision. In addition, the code
is also interfaced with CPLEX version 9.0 and
AMPL.

• The Hessian matrices Wk and Bk are derived
from the Hessian of the Lagrangian function of
Problem P and Problem H respectively. In the
event the matrices are indefinite we then perturb
them by using a modified Cholesky factorization
method [2] to make them positive-definite.

• For parameter values in the main filter algorithm
we set t = 0.99, σ = 10−4, η = 10−3, γ =
10−3 and αmin = 10−5 for h(c(x)) 	= 0. As
for the feasibility restoration phase, we choose
the initial trust region ρini = 5, ρmin = 10−4

and ζ = 10−4. In addition we set the tolerance
level εtol = 10−6 and the maximimum iterations
permitted is kmax = 500.

• As for the convergence criteria, the KKT error,
the constraint violation h(c(x)) and the 	∞ norm
of the QP or SOC step are computed. We termi-
nate the iteration when the above conditions are
satisfied to an accuracy of εtol or k = kmax.

• The algorithm may also terminate in the feasi-
bility restoration phase and this occurs when the
restoration phase can no longer reduce the con-
straint infeasibility function. Hence, the algo-
rithm stops if the iteration k = kmax or the KKT
error of Problem H and the 	∞ of the step are
less then εtol

To analyze the performance of our algorithm we
will compare it with LOQO version 6.06 and SNOPT
version 6.1 where both of these solvers utilize back-
tracking line search techniques and also merit func-
tions to promote global convergence. The selection of
large scale CUTE test problems are listed in Table 1.

Selected CUTE Problems
80 ≤ n < 500 500 ≤ n < 1000 n ≥ 1000
AIRPORT BDVALUE CATENARY
BRATU2D CBRATU2D CHEMRCTA
BRATU3D CBRATU3D CHEMRCTB
BRITGAS CORKSCREW GILBERT
CHANDHEQ EIGENA2 MANNE
CLNBEAM GAUSSELM MINPERM
GROUPING GPP OPTMASS
HVYCRASH HADAMARD READING1
MINC44 OPTCDEG2 SVANBERG
NGONE OPTCDEG3 UBH5

Table 1 Selection of 30 large scale CUTE test
problems

In this paper we only discuss the statistics con-
cerning the performance of the three codes and to sim-
plify the presentation, if filLS, LOQO or SNOPT ter-
minates before reaching a local solution of Problem
P , the following notations are used:

-E- An arithmetic error occurred causing the code to
fail

-I- The nonlinear problem was found to be infeasi-
ble

-F- Nonlinear contraints were found to be locally in-
feasible

-M- The run was terminated after reaching the maxi-
mum number of iterations.

By using the failure type notation, Table 2 gives a
breakdown of the results of our runs.
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Number of Problems
Failure type filLS LOQO SNOPT

-E- 0 0 1
-I- 0 0 5
-F- 4 0 0
-M- 0 5 0

Total number
of failures 4 5 6

Total number of
successful runs 26 25 24

Table 2 Types of failure for filLS, LOQO and
SNOPT on 30 large scale CUTE test problems

As regards on the performance of filLS on NLP
problems we feel it is very encouraging as the code
is able to solve 26 out of the 30 test problems and
furthermore it outperforms both LOQO and SNOPT.
The test problems which our code failed to solve
are HVYCRASH, CORKSCRW, GAUSSELM and
CATENARY while for LOQO the test problems
which caused it to exceed its maximum number of it-
erations (kmax = 500) are MINC44, GAUSSELM,
CHEMRCTA, CHEMRCTB and MANNE. Finally
for SNOPT, the test problems which it failed to
find local solutions are CBRATU3D, HADAMARD,
GILBERT, UBH5, SVANBERG and CATENARY.
Although more tests are needed to reach a more rig-
orous conclusion, the preliminary results do show that
the filter concept together with line search and trust
region strategies can be an attractive choice.
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Figure 2: Comparing the number of iterations for
selected large scale CUTE test problems

Another encouraging aspect of filLS can be seen
by comparing the number of solved problems for a
certain range of number of iterations and function
evaluations. In Figure 2, we can see a majority of the
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Figure 3: Comparing the number of function
evaluations for selected large scale CUTE test

problems

problems solved by filLS required less than 10 itera-
tions while only a small proportion of the problems
solved by LOQO belong to that category. The same
efficiency is observed when comparing our code with
SNOPT where the latter tends to outperform LOQO
in some categories. In addition such a scenario is also
repeated in Figure 3 if we were to compare the num-
ber of problems solved for a certain range of function
evaluations. Overall, from an efficiency point of view,
we feel our code is as efficient as either LOQO and
SNOPT to solve large scale NLP problems.

4 Conclusion

A prototypical algorithm of applying filter strategy in
line search SQP methods has been described, demon-
strating the fact that convergence for NLP can be
achieved without the need to maintain sufficient de-
scent in a traditional penalty type merit function ap-
proach. From the numerical tests, the code filLS is
relatively suitable for solving nonlinear optimization
problems including large scale problems. In terms
of number of successful run problems, the code filLS
outperforms LOQO and SNOPT and we believe this
is due to the filter strategy which is more flexible in
accepting iterates, and also to the used of feasibility
restoration phase to generate iterates which are close
to the feasible region. As for efficiency and reliabil-
ity, the code filLS in our view is therefore suitable for
large scale optimization and is well-suited to provide
the basis of a commercial NLP code.
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