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Abstract

In this paper we study cyclic codes of any length n
over the ring Z5 + uZ,. We find a unique set of gen-
erators for these codes. We also study the dual codes
and find their unique generating sets. The Hamming
distance of these codes is studied as well.
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1 Introduction

Let R be the ring Zs + uZy = {0,1,u,u + 1} where
u? =0 mod 2. A cyclic code of length n over R is
an ideal in the ring R, = R[z]/ (z™ —1). The Ham-
ming weight of a codeword w is defined by wg(u) =
[{iJu; # 0}|, i.e. the number of the nonzero entries
of w. The minimum Hamming distance dg(C) of a
code C is the smallest possible weight among all its
nonzero codewords.

Let w = (ug,...,up—1) and v = (vg,...,v,_1) be
any two vectors over R. We define an inner product
over R by u-v = ugvg + -+ + Up_1vp_1. If u-
v = 0, then u and v are said to be orthogonal. We
define the dual of a cyclic code C to be the set C+ =
{ueZ}):u-v=0forall vin C}. It is clear that
C* is also a cyclic code.

The parameters of an R—code C with 4%12k2
codewords and minimum distance d is denoted by
(n,4F12%2 d). Such codes are often referred to as
codes of type {ki,ka}.

The structure of cyclic codes over rings of odd
length n has been discussed in [4, 6, 8, 11]. Calder-
bank and Sloane [6] and other papers [11] presented
a complete structure of cyclic codes over Z; of odd
length. They have shown that cyclic codes are princi-
pal ideals (have a single generator) in Zy[z]/ (z™ — 1).
In [4] Bonnecaze and Udaya studied cyclic codes of

odd length over R. They have also shown that cyclic
codes are principal ideals in R, = R[z]/(z" —1).
Blackford [3] studied cyclic codes over Z; of length
n = 2k when k is odd. He showed that the ring
Zy[z]/ (2™ — 1) is not a principal ideal ring and hence
ideals might have more than one generator. Cyclic
codes over Z4 of length a power of 2 are studied
in [1] and [2]. They also showed that the ring
Zy[x]/ (™ — 1) is not a principal ideal.

In all of the above work, researchers always put
some restrictions on the length n. Either n is odd or
n = 2k or n is a power of 2.

In this paper, we investigate the structure of cyclic
codes over R of any length n. There will be no restric-
tions on the length n. We will give a unique represen-
tation for cyclic codes and their duals as ideals in the
ring R, = R[z]/ (2™ — 1). The Hamming distance of
these codes will be studied as well.

The remainder of the paper is organized as follows.
In Section 2, we will study cyclic codes over Zs + uZs
and we will find a unique set of generators for them.
In Section 3, we study dual codes and their genera-
tors. In Section 4, we study the Hamming distance
of these codes. Section 5 concludes the paper.

2 Generators for Cyclic Codes
over /s + uZsy

Consider the ring R = Zs + uZs = {0,1,u,u+ 1}
where u? = 0 mod 2. The ring Z5 is a subring of R.
A cyclic code C in R,, = R[z]/ (2™ — 1) is an ideal in
R,,. Our goal is to find a set of generators for C. Note
that we have no restrictions on n.

Let C be a cyclic code in R,. Define ¢ : C —
Zs[z]/ (a" — 1) by p(z) = 2*.

@ is a ring homomorphism with keryp =
{ur(z) : r(z) is a binary polynomial in C.} . Let
J = {r(z): ur(z) €kerp}. It is easy to check
that J is an ideal in Zs[z]/ (2™ — 1) and hence a



cyclic code in Zs[z]/ (2™ —1). So J = (a(x)) where
a(z)| (z™ —1). This implies that kerp = (ua(x))
with a(x)| (2™ — 1) mod2. The image of ¢ is also
an ideal and hence a binary cyclic code that has
a generator g(z) with g(z)|(z™ —1). This implies
that C = (g(x) +up(z), ua(z)) for some binary
polynomial p(x).

Claim 1 We may assume dega(z) > degp(x), and
a(x) |g(x)-

Proof. Since

¢ = (9() +up(z), ua(z))
= (9(z) +ulp@)+2'a(z)], ua(z)),

then we may assume dega(x) > deg(p(z). Since

ug(z) € kerp = (ua(z)),

then a(z) |g(z). If g(z) = a(z), then C =
(9(x) +up(z)). m

Claim 2 a(z) |p(z) <xn — 1) .

Proof.

w(xngl[g+up]) = w(wxngl)O

= (upx g_l) € ker ¢ = (ua)

Claim3 If C = (g(=
(h(z) + ug(x), ub(x)) then g
and p(xz) = q(z) moda(x)).

I~

Proof. From the construction of C we have J =

{r(z): ur(z) ekerp} = (a(z)) = (b(z)). Hence
a(z) = b(x).
Suppose  C (9(z) + up(x), ua(z))

(h(x) 4+ ug(z), ub(z)). Note that h(z) € ¢(C) =
(9(x)) . Hence h = g(x)a(x) and deg h(x) > deg g(z).
By the same means g(z) = h(z)B(z) = g(x)a(z)5(z)
and degg(z) > degh(x). Since g(x), and h(z)
are factors of (2" —1)mod2 and (z™—1) fac
tors uniquely over Zs into a product of irre-
ducible polynomials then «a(x) = f(z) = 1 and
g(x) = h(z). Since g(z) + ug(z) € C, then
9(z) +ug(z) = [g(z) +up(z)] + wva(z)m(z). This
implies
ula() - p(2)] = va(z)m(a)
Therefore p(x) = g(z) mod a(z)). m
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Claim 4 Suppose n is odd, then C =

(9(z) + ua(z))

(9(z), ua(z)) =

Proof. Suppose a(x)|g(x) and a(z)|p(x) (%) .

Then g(z) = a(x)my(z) and p(z) (xg(x)1> =
a(x)mg(xz) Since m is odd then (z™ —1) factors
uniquely as a product of distinct irreducible poly-
nomials. This implies that a(z) must be a factor
of p(z). But p(x) has degree less than a(z). Hence
p(z) = 0 and C = (g(z),ua(z)). Let h(x) = g(z) +
ua(x).

uh(z) = ug(z) € (9(z) + ua(z)).
Also,

(B22) 460 =0 (S 0 o) e,

n o_

Since n is odd then gecd (w 1, g

g(x)
hence there exist binary polynomials fi(x), fa(x)
such that

(:c)) =1, and

- (xg(_)1>f1() 92 fa(a)
wale) = wato) (S A+ waloa)f

€ (g9g+ua).
Hence g(z) € (g+wua) and
C = (9(x),ua(z)) = (9(x) + ua(z))
[

This is similar to the results obtained in [4] and [6].
We can summarize the above by the following the-
orem.

Theorem 5 Let C be a cyclic code in R, =
Rlz]/(z™ —1), R = Zo + uZs = {0,1,u,u+ 1} and
u? =0 mod?2. Then

1. If n is odd then R, is a principal ideal Ting
and C = (g(z),ua(x)) = (g9(x)+ua(z))
where g(x), a(z) are binary polynomials with
a(z) |g(z) [(™ — 1) mod 2.

2. If n is not odd then
(a) If g(x) = ;L(w)7 then €' = (g(z) + up(z))

where g(x), p(z ) are binary polyno-
mials zh ( 2" — 1) mod2, and

)—‘\/’-\
\_/



() C = (9(x) + up(z), uva(x)) where
g(z), a(x), and p(x) are binary poly-
nomials with a(z)|g(z)|(z™ — 1) mod2,

@)lp(a) (S and

degg(z) > dega(z) > degp(x).

Corollary 6 Suppose n is not odd and

(%,a(x)) =1, then p(z) = 0.

3 Dual Codes

Definition 7 Let I be an ideal in R,. We define
A(I) to be the set

A(I) ={g(z) : f(z)g(x) =0 for all f(x) in I}.
The set A(I) is called the annihilator of I in R,,.
Definition 8 If f(z) = ag + a1z + -+ + a,2" is a
polynomial of degree r then the reciprocal of f(x) is

the polynomial f*(x) = ar + ar—12 4+ -+ + apz”.
Symbolically, f*(x) can be expressed by f*(x) =

1)

It is obvious that if C is a cyclic code with as-
sociated ideal I then the associate ideal of Ct is

A ={f"(z): f(z)el}.
Theorem 9 Let C' be a cyclic code of even length.
Lﬁcwm+wm»mmmwﬁii>

g(x)ma(x) then g(z)

A(C) = (x" - Ly qu(x))

2. 1If C = (9(x) +up(z), val(z))  with

a(@)lg@l(@ = 1), a@)lp(z) | Z 75 Jand

deg g(x) > dega(x) > degp(x). Suppose g(x) =
ooy (o). 3te) (S

= a(x)ma(x), then

A(C) = (% + uma(z), u%)
Proof. We will prove (2)
Notes that
(S + wmle)) (o(o) + unla)
wle) (S50 Hum(@lge) = o
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and
(a::(;)l + umg(x)) ua(x) =0,
and
" —1
Cas (9(z) + up(z)) =0,
and
" —1
u @) (ua(x)) =0
Hence,
" =1 " —1
J = ( (@) + uma(z), u @) > C A(C).
Now, suppose A(C) = (h(z)+ uk(z),ur(x)),
where r(z) | h(z), and r(z)|k(x) (xh(;)1> .
ur(z) [9(z) +up(z)] = wr(z)g(z) =
Zn—1
=+ 1) = (S50 ) dw)
= wur(z) € J. Also,

ua(z) [h(z) + uk(z))

uh(z)a(xz) =0
o) = (S5t ) e

a(x)

I

and

(9(x) +up(z)) [h(x) + uk(z)]
g(@)h(x) + ug(z)k(z) + up(z)h(z) = 0.

Since h(zx)

I
= /N
®R3
—
8| |
N—
—_
N———
o~
S

This implies that there exists a binary polynomial
ta(x) such that

k(z) + ma (@)t () = (5”;(;)1) o (2).



Hence,
h(z) + uk(z) = <x§($)1) ti(x) + uma(z)ti(x)
z"—1
+u< ) )tz(x)
t1(x) (xa(;)l —i—umz(x)) +

mn

Therefore, (SU(IW + ums(x), u%) =AC). m

As a result of this we get the following theorem:

Theorem 10 Let C be a cyclic code of even length
n

1. If C = (g(x) +up(z)), with p(zx) (%) =
g(x)ma(x) then the dual of C is given by

o= () o o)
" —1

where i = deg (W) — deg (ma).

2. If C = (g(x) + up(z), ua(x)), then the dual of C
18 given by

4  Minimum Distance

In this section we investigate the minimum Hamming
distance of a cyclic code of even length.

Let C = (g(z) + up(x), ua(z)). We define C, =
{k(z)|uk(z) € C}. Tt is clear that C,, is a cyclic code
over Zs.

Theorem 11 Let C = (g(x)+up(z), uva(z)).
Then, C, = {(a(z)) and dg(C) = dy(Cy).

Proof. Let ub(x) € C. Then ub(z) € kerp =
(ua(z)). Hence C, = (a(zx)). Further, let I(z) =
li(x) + uly(z) € C where l1(x),l2(x) € Zo[z]. Since
ul(x) = uli(z) € C and dg(ul(z)) = dg(l(x)) and
uC'is a subcode of C' with dig(uC) < dy(C) it is suf-
ficient to focus on the subcode uC in order to compute
the Hamming weight of C. Since uC' = (ua(x)) thus
dy(C) =dg(Cy). m
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Cyeclic codes over finite fields with the lengths di-
visible by the characteristic of the field, which are re-
ferred as repeated root cyclic codes are investigated
in [7] and [9]. Here, in order to investigate the lower
bounds of cyclic code of length n which are divisible
by 2 over a R we shall use the results obtained in [7].

Let C be a binary repeated-root cyclic code of
length n = 297 where (2,72) = 1. Let

l
o(@) = [[milw)”

be a generator polynomial of the code C with distinct
irreducible polynomials m;(x) of multiplicity e;. For
all0 <t < 2°—1,7,(x) is defined as the multiplication
of m;(z)’ s with ¢ < e;. Then the simple-root cyclic
code C of length 7 is generated by g, (z).

Prior stating the theorem we refer to some of the
definitions given in [7].

wg((x — 1Y) =P,

where

P=1]t+1)

i
and t;’s are the coeflicients of the radix-p expansion
of t.

Theorem 12 [7] Let C' be a binary repeated-root
cyclic code of length n = 297 where (2,7) = 1. Then,
dp(C) = Pr-dy (Cy) for somet € {t+1,t+2,..., 2’ —
1}

Now combining Theorems 11 and 12 we obtain the
following theorem:

Theorem 13 Let C' = (g(z) 4+ up(z), ua(x)) be a
cyclic code over R of length n = 2'n where (2,7) = 1.
Let D = Cy,. Then, dg(C) = Pr-dg(Dy) for some
Te{t+1,t+2,...,2" =1}

Definition 14 Let s = be_12°71 + be_92°72 4 -+ +
b12' + b92° be the 2-adic expansion of s. Let be_1 =
be—g ="+ =beg=1wheree—q>0 and be_g—1 =
0.

1. Ifbe_; =0 foralli € {q+2,q9+3,...,e—1}, then
s is said to have a 2-adic length q zero expansion.

2. Ifbe—i #£0 for somei € {g+2,q+3,...,e —1},
then s is said to have a 2-adic length q nonzero
exrpansion.

If e = q then, s is said to have 2-adic length e
expansion or 2-adic full expansion.



Example 15 5 = 224+2° and hence ¢ =1, and 5 has
a 2-adic length 1 nonzero expansion. 6 = 22+ 2% has
a 2-adic length 2 zero expansion. 7 = 22 4+ 21 + 20
and hence ¢ = 3, and 7 has a 2-adic full expansion.

Lemma 16 Let C be a binary cyclic of length 2°¢
where e is a positive integer. Assume that C = (a(x))
where a(z) = (227 — 1)h(z) for some h(z). If h(z),
generates a cyclic code of length 2% and minimum
distance d, then d(C) = 2d.

Proof. Suppose h(x) generates a cyclic subcode of
minimum distance d. Since a(z) = (#2 — 1)h(z) is

the generator of C' then for ¢ € C' we have c = (aczﬁl -

1)i(x)h(z) for some I(z). §E?ce l(z)h(z) € (h(x)) for
all I(z) and w(c) = w(xz® I(x)h(x)) + w(l(z)h(z))
we obtain the result. m

Lemma 17 Let C be a cyclic code over R of length
2¢ where e is a positive integer.  Then, C =
(g9(z) + up(z),ua(z)) where g(z) = (x — 1)' and
a(z) = (x — 1) for somet > s> 0.

if s <2°71 then d(C) = 2.

Proof. Let 267! = s +m. Then

u <x2571 — 1) = u(zx-— 1)2671

Therefore, d(C) =2. m

Lemma 18 Let C be a cyclic code over R of length
2¢ where e is a positive integer. Then, C =
(9(z) + up(z),ua(z)) where g(z) = (z — 1)' and
a(z) = (x—1)% for somet > s > 0. Suppose s > 2¢~ 1.
Then, s has 2-adic length ¢ > 1 expansion

1. If s has a 2-adic length q zero expansion. Then,
d(C) = 24.

2. If s has a 2-adic length q nonzero expansion.
Then, d(C) = 2¢+1,

Proof. Since s > 2¢71.

1. If s has a 2-adic length ¢ zero expansion. Then,

s = 207t 490724 4 92°79 and
a() = (z-1)°
= -1 @-1)" . (@-1¥"
= @ -DEF - @ ).

Now, h(z) = ((z* " —1)) generates a cyclic code
with minimum Hamming distance 2. By Lemma
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16, the subcode generated by (22 “"" — 1)h(z)
has minimum Hamming distance twice as the
subcode generated by h(x) which is 4. By induc-
tion on ¢ we conclude that the code generated

by a(z) has minimum Hamming distance 29 and
hence d(C) = 2.

2. If s has a 2-adic length ¢ nonzero expansion.
Then,

s=20" 49724 42094y

where 271 > ¢ >0, and e — g — 1 = 0. Now

a(z) = (z-1)
= (a— 1)26*1+26*2+...+26*‘1+t
_ (xzefl _ 1)(:52@72 _ 1) o
@ =1 (x+1)

Since 21 > ¢, let 2°~! =t + j for some nonzero
j. Then,

()

Hence, the subcode generated by h(z) = (z + 1)
has minimum Hamming distance 2. By Lemma
16, the subcode generated by (22" " —1)h(z) has
minimum Hamming distance twice as the sub-
code generated by h(z) which is 4. By induction
on g we conclude that the code generated by a(x)

has minimum Hamming distance equals to 291!
and hence d(C).

(x— 1)2571

= (@+D'@=+1).

Example 19 If n = 8, then 28 — 1 = (z —1)° =
g(z)8. Due to Lemma 17, the dimensions may change
but the minimum distance equals to 1, 2, 4 or 8. For
exzample, by Lemma 17, if a(x) = g7 then 7 has 2-adic
length 3 full expansion, hence the minimum distance
will equal to 8. On the other hand, if a(x) = g° then
5 has 2-adic length 1 mon zero expansion, hence the
minimum distance will equal to 4. Also, if a(z) = ¢°
then 6 has 2-adic length 2 zero expansion, hence the
minimum distance will equal to 4.

5 Conclusion

In this paper, we studied cyclic codes of any length
n over the ring R = Z5 + uZy. We have constructed
a unique set of generators for theses codes and their
duals. We also studied the minimum Hamming dis-
tance for these codes. Open problems include the
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study of self-dual codes and their properties. Also, it [11] V. Pless and Z. Qian, “Cyclic Codes and
will be interesting to construct a decoding algorithm Quadratic Residue Codes over Z4,” IEEE Trans.
for these codes that works for any length n. Inform. Theory, vol. 42, no. 5, 1594-1600, 1996.
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