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Abstract: In the present study, we define a functional by means of Kullback-Leibler (K-L)
measure for continuous random variables and consider its properties. By virtue of this functional,
we suggest a new generalization of K-L optimization principle (GKOP). Due to the defined
GKORP, it is possible to obtain the probability distribution of the system which is closer to the true
distribution in the sense of K-L measure. Finally, the distributions of yearly wind speed data
measured in 2001, 2000, 1999 are found by using GKOP and compared with the Weibull
distribution which is widely used to determine distribution of wind speed. The Weibull
distribution, whose parameters are estimated using maximum likelihood method, shows worse fits
considered all years than the distribution derived from GKOP.

Although principles based on information theory have been used in a variety of field, the
obtained distributions though GKOP are the first time to be applied to the wind energy field.
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distribution [14]. In this process, auxiliary
functional constructed by Lagrange multipliers
method reaches its minimum value at some

1 Introduction

Applications of entropy optimization principle
can be found in the image process, statistical
inference, pattern recognition, queuing theory,
reliability analyses, the contingency table,
goodness-fit-test and parameter estimation,
reliability, life testing, survival analysis,
engineering, wind energy studies [1-11].

The one of the important principle is
Kullback-Leibler minimum cross entropy
principle [12-14]. According to Kullback’s
minimum cross entropy principle, out of all
probability distributions satisfying given
moment constraints, it is choosen a probability
distribution P that minimizes Kullback-Leibler
measure. This distribution is called as MinxEnt

distribution defined by K-L principle, which
corresponds to some moment vector function.
So we can define a functional that assigns to
each moment vector function precisely one
number- conditional minimum value of
Kullback-Leibler measure. In order to
discriminate mentioned functional from the
Kullback-Leibler measure, we call it as
Kullback-Leibler functional of moment vector
functions.

Note that Kullback-Leibler measure
for the continuous random variable is
functional of probability density functions. At
the same time, K-L functional is defined on the



set of given moment vector functions and
reaches its minimum value from the set of
conditional minimum values of Kullback-
Leibler measure. We prove that K-L functional
is continuous on the set of continuous moment
vector-functions.

Moment vector function which gives
the least and the greatest value to K-L
functional specify probability distribution. We
have proved that the specified probability
distribution gives to K-L functional the
greatest value in the compact set of continuous
moment-vector functions. However, this
distribution contains the greater information
than the other probability distributions. This
result can be considered as a Generalized
Entropy Optimization principle.
In this case, when a finite number of moment
vector-functions are given, in other
words, moment conditions are considered,
then by using mentioned GKOP, it is possible
easily to obtain the probability distribution
representing the greatest information.
It should be noted that if the finite number —k
moment function is given, then by virtue of
possible-m (m<k) combinations of these
functions we can obtain mx 1 moment vector
functions which corresponds to probability
distribution containing greatest information.
Moreover by testing several moment vector
function GKOP allows to obtain probability
distribution representing maximum
information and therefore to draw as well as
possible inferences about population from the
given random sample.

The rest of the paper is organized as
follows. Section 2 introduces Kullback-Leibler
measure, Kullback-Leibler functional defined
on moment functions. Properties of this
functional also are given as theorems. In
Section 3, the estimation of distribution of
wind speed data taken from [15] by using
GKOP is obtained. The Section 4 concludes
the paper by summarizing the mains results
and suggesting future studies.

2. Kullback-Leibler functional on
moment vector functions

Let us consider the problem of minimizing
Kullback-Leibler measure
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Use of the Euler- Lagrange equation of the
calculus of variations gives:

(0 = A0 eXPiy + 32,0, (09). O

(6) is called as MinxEnt in [1].
If (6) is taken into account in (1), then
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It is known that (6) gives to K-L measure
minimum value. The following functional

U (g) = Dmin
is called as the Kullback-leibler functional on
the set of moment vector function g(X)

Let us consider functional
b
H(f)==] f(x)In f(x)dx

which represents entropy of random variable
with f(x) probability density function



(p.d.f), then this functional subject to
constraints

b

j f(x)dx =1 8)
has maximum value

H. .. =In(b-a). 9)

Entropy of variable with MinxEnt p.d.f. is
equal.

b
H(f):-j f(x)In f (x)dx
. i (10)
=—j f(x)(ln q(x) + 4, +Z;ngj(x)]dx

a j=1

b
:_I f(x)Ing(x)dx-U(g)

b
Hz—j f (x)Inq(x)dx —U (g) (11)

It is known that the change of entropy is
information.

The change of entropy (9) via (11) is given as
follows:

| =In(b-a) +j' f(x)Ing(x)dx+U(g) (12)

where U(g) by defined (7) is Kullback-

Leibler functional defined on the set of
moment vector function g(x) . The functional

U(g) defined by (7) has the properties which
are given as theorems.

Theorem 1 U(g) is continuous on the set of
continuous vector moment functions C[a,b].
Theorem 2. U(g) reaches its least and

greatest values in the given compact set
K < Cl[a,b] of continuous moment vector
functions.

maxU (g) =U(g")

The distribution corresponds to g is called
as MaxMinxEnt.

3. The Use of Wind Probability
distributions derived from GKOP

This section develops a theoretical approach
to the analytically determination of the wind
speed distributions through the application of
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GKOP. On this purpose, a comparison of the
two parameters- Weibull which is widely used
to determine distribution of wind speed [16-20]
and the distributions derived from GKOP
(MaxMinxEnt) is also made to show the ability
to describe the experimental mean wind power
density.

The comparison between MaxMinxEnt
distributions and the Weibull distributions for
the wind speed data is shown in Table 1, Table
2, Table 3. Here the prior distribution is taken
the distribution of previous year.

Chi-square(  x?), root mean square

error(RMSE),  correlation  coefficient( R?),
Kullback-Leibler measure (K-L) will be used
in statistically evaluating the performance of
the Weibull and the distributions obtained
GKOP.

The formula of mentioned ssuitability
judgment criteria are

N
Z(yi _Xi)2
=T (12)
Z(yi -%)?
N
Z(Yi _Xi)2
R?=1-2%—— (14)
Z(yi _Zi)2
K—L:ZN:yi Iog% (15)

i=1 i
where y; is the ith actual data, X; is the ith

predicted data, N is number of all observed
wind speed data, L is log likelihood function,
n is the number of parameters or the number of
constrains.

The best distribution function can be
determined according to the lowest values

RMSE, ;(2 , K-L measure and the highest value
R .

The wind speed data taken from [15] in
time-series format was usually arranged in the
frequency distribution format. It is convenient
a statistical analysis. We fit the Weibull and
distribution and the distributions obtained
GKOP to wind speed data. The frequency
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distributions calculated the Weibull and the
distributions obtained GKOP are given Table 1

Table 1. The estimated distribution of Table 3. The estimated distribution of wind
wind data for 1999, when prior distribution is data for 2001, when prior distribution is taken
taken as 1998 as 2000

Vv 1999 ¢ f f f
i w k1 k2
(mis)  (h) v 2000 f ., f,
01 2681 03060 03272 02028 03115 (™) ()
1-2 3410 03893 03167 03863 03812 1 2297 02623  0.2903 0.2588  0.2621
2-3 1558 01779 01921 01773 01675 1. 3397 0.3880  0.3080  0.4004  0.3891
3-4 565 00645 00961 00821  0.0776 2.3 1638 0.1871  0.2031  0.1847  0.1878
4-5 24700282 00422  0.0354 00343 34 722 0.0825 01102 00729  0.0762
>-6 138 00158 00167 00134 00136 45 332 0.0379  0.0524 00401  0.0422
6-7 63 0.0072  0.0061  0.0058  0.0061 5. 155 0.0177  0.0224 0.0203  0.0211
7-8 3200037  0.0020  0.0038  0.0042 4.7 89 00102  0.0088 0.0098  0.0100
8-9 23 0.0026 ~ 0.0006  0.0005  0.0006  7.g 48 0.0055  0.0032 0.0036  0.0036
9-10 14 00016  0.0002  0.0004 00004 g9 38 00043  0.0011 0.0020  0.0019
10-11 14 00016  0.0001 0O 0 9-10 20 0.0023  0.0003 0.0020  0.0018
11-12 9 0.0010  0.0000  0.0002 00003 10-11 10 0.0011  0.0001 0.0010  0.0008
12-13 200002 00000 0 0 11-12 5 0.0006  0.0000 0.029  0.0023
13-14 1 0.0001 0.0000 0.0003 0.0004 12-13 2 0.0002 0.0000 O 0
14-15 200002 00000 00007 00010 1314 3 0.0003 00000 0.0014  0.0010
15-16 1 00001 0.0000 0.0004 0.0006 14.15 0 0 00000 0 0
16-17 0 0 0.0000 0.0005 0.0007 15-16 0 0 0.0000 0 0
16-17 0 0 0.0000 0 0

In the Table 1, Table 2, Table 3, f, is

probability function (p.d.f.) of observed data,
f, (X) is the Weibull density function, f,,

Table 4. Comparison of the actual probability
distribution with the distributions obtained
from GKOP and the Weibull distribution.

(MaxMinxEnt;) is the distributions obtained 1999
GKOP subject to one constraint, > >
f,,(MaxMinxEnt;) is the distributions RMSE X R K-L
obtained GKOP subject to two constraints. f, 0.0204 0.00047515 0.9680 0.0376
Table 2. The estimated distribution of wind
data for 2000, when prior distribution is taken fu 00057 375680005 0.9974 0.00969
as 1999 fo 00050 3.0648¢-005 0.9980 0.00801
Y] 2000 f f f
(m/s) (h) i w k1 k2
0-1 650 03026 0.3270 0.3106 03041 As can be seen Table 1, Table 2, Table 3, the
1-2 3636 0.4152 0.3375 0.4080 0.4074 | | f R? btained b .
23 1488 0.1699 0.1970 0.1740 0.1790 arger value of R~ are obtained Dy "USIng
3-4 521 00595 00893 00585 0.0608 MaxMinxEnt subject to one and two
4-5 254 0.0290 0.0338 0.0238 0.0245 constraint. The results shows that RMSE, X-,
5-6 114 0.0130 0.0111 0.0125 0.0126 K-L values of MaxMinxEnt in all years are
6-7 49 0.0056 0.0032 0.0054 0.0052 lower than the values obtained by the Weibull
7-8 16 0.0018 0.0008 0.0026 0.0024 distribution. As a results, MaxMinxEnt or the
8-9 8 0.0009 0.0002 0.0018 0.0016 distributions obtained GKOP are suitable for
9-10 7 0.0008 0.0000 0.0010 0.0009 the distributions of wind speed
10-11 3 0.0003 0.0000 0.0010 0.0008
11-12 8 0.0009 0.0000 0.0006 0.0005 Table 5. Comparison of the actual probability
12-13 00 0.0000 00001 0.0001 distribution with the distributions obtained
13-14 3 0.0003 0.0000 0.0001 0.0000 . Lo
14-15 0 0 0.0000 0.0001 0.0001 from GKOP and the Weibull distribution.
15-16 00 0.0000 0.0001  0.0000 2000
16-17 0 0 0.0000 O 0

RMSE X? R? K-L
f, 0.0220 0.00055302 0.9586 0.0425
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fo 0.0030 1.074e-005 0.9985 0.0030
fi, 0.0031 1.206e-005 0.9995 0.0027

Table 6. Comparison of the actual probability
distribution with the distributions obtained
from GKOP and the Weibull distribution.

2001

RMSE X? R? K-L

f, 00222 0.00056336 0.9586 0.0405
ki 0.0041 1.931e-005 0.9986 0.0061
k2 0.0022 6.0358e-006 0.9996 0.0049

— —h

Figure 1. The probability distribution of actual
data, the MaxMinxEnt f,, f,, distributions
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Figure 2. The probability distribution of actual
data, the MaxMinxEnt f,, f,, distributions
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The MaxMinxEnt and Weibull probability
density functions of yearly wind speed data are
seen inFigure 1, 2, 3

Figure 3. The probability distribution of actual
data, the MaxMinxEnt f,, f,, distributions
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4 Conclusion

The following main conclusions can be drawn
from the present study:

1. The yearly distribution of wind speed
was obtained through application of
the GKOP

2. A comparison was made between the
two parameters Weibull distribution
and the distribution obtained through
GKOP using various criteria. The
distributions obtained GKOP are more
suitable for distribution of wind speed.

3. Although  principle  based on
information theory has been used in a
variety of field, the obtained
distributions GKOP is the first time to
be applied to the wind energy field.

4. One of the main results is that the
distributions obtained by GKOP also
can represent- the wind power density
much more accurately.
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