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Abstract

In this paper we study reversible cyclic codes of any
length n over the ring Z,. First we find a set of gen-
erators for cyclic codes over Z; with no restrictions
on the length n. We then classify reversible cyclic
codes with respect to their generators. Examples of
reversible cyclic codes of lengths 8 and 9 with their
minimum Hamming distance will be studied as well.

Key-Words: The ring Z,, Linear Codes, Cyclic
Codes, Quaternary Codes, Reversible Cyclic Codes

1 Introduction

Consider the ring Z, = {0,1,2,3}. A linear code
C of length n over Z, is defined to be an additive
submodule of the Zy—module Z}. A cyclic code of
length n over Z; is defined to be a submodule of
Z} that is invariant with respect to the shift oper-

ator that maps the element (co,...,c,—1) of Z} to
the element (¢,—1,cq,...,Cn—2). For each element
(coy--.,cn—1) of Z} we associate a polynomial c¢o +

1T + ...cp—12" 1 in the ring R,, = Z4[z]/ (2" — 1).
In this case cyclic codes are defined to be ideals in
R,,. A code C is called reversible if it is invariant
under a reversal of the digits in all its codewords.
i.e., a cyclic code C is called reversible if for each
codeword u = (ug,u1, - ,un—1) € C then the re-
verse of u, u” = (Up—1,Up—2, -+ ,Up) is also in C. The
Hamming distance between codewords u and v, de-
noted by H (u,v), is simply the number of coordinates
in which these two codewords differ. The Hamming
weight of any codeword u = (ug,u1, -, Up—1), w(u)
is the number of nonzero entries in v. The Hamming
distance of any linear code C' is given by

d(C) =min{w(u) : v € C and u # 0}

For each polynomial p(x) = pg + p1z + -+ + prz”
with p, # 0, we define the reciprocal of p(x) to be

the polynomial p*(z) = 2"p(1/z) = pr + pr_12" 1 +
-+ + poz”. Note that deg p*(z) < deg p(x) and if
po # 0, then p(z) and p*(z) always have the same
degree. p(z) is called self-reciprocal if and only if
p(z) =p"(z).

Reversible cyclic codes over finite fields were stud-
ied first by [8]. it was shown that C = (f(z)) is
reversible if and only if f(z) is a self reciprocal poly-
nomial.

In this paper we study reversible cyclic codes over
Z, of any length n. Such codes have applications in
the subject of DNA computing. In particular this
class of codes is important because it satisfies the fol-
lowing constraints.

e The Hamming constraint: For any two different
codewords u, v € C, H(u, v) >d.

e The reverse-constraint: For any two codewords
u,v € C, H(u,v") > d.

These two constraints will make non-desirable hy-
bridization between a codeword and another code-
word less likely to happen.

Also, this class of codes have some applications in
constructing certain data storage and retrieval sys-
tems. We note that we put no restrictions on the
length n.

The rest of the paper is organized as follows. In
section 2, we study cyclic codes of length n over Z,
and we find a unique set of generators for them. In
section 3, we study reversible cyclic codes over Zj4
and we put a set of constraints on their generator
polynomials. Section 4 includes a list of all reversible
cyclic codes of lengths 8 and 9. Section 5 Concludes
the paper

2 Generators for Cyclic Codes

A cyclic code C' in R, = Zylz]/ (2™ — 1) is an ideal
in R,. Our goal in this section is to find a set of
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generators for C for any length n. Most previous work
on cyclic codes in R,, was restricted to the case where
nis odd [3, 6, 9]. Little work was done on cyclic codes
in R,, for even length [1,2, 10]. [1] has studied cyclic
codes of length n = 2°. It was shown that the ring R,
is not a principal ideal ring. [2] has studied the case
where n = 2e and ged (e,n) = 1 and has also shown
that R, is not a principal ideal ring. Our approach
in studying these codes will be general and doesn’t
depend on the length n.

Let C be a cyclic code in R,. Define ¢ : C —
Zs[x]/ (2™ — 1) by p(z) =  mod 2.

%) is a ring homomorphism with kerp =
{27" ( ) is a binary polynomial in C.}. Let J =
{r(z): 2r(z) € kerp}. It is easy to check that J is
an 1deal in Zg[ ]/ (™ — 1) and hence a cyclic code in
Zs[x]/ (2™ —1). So J = (a(x)) where a(x) | (z™ —1).
This implies that ker ¢ = (2a(z)) with a(z)| (™ — 1)
mod 2. The image of ¢ is also an ideal and hence
a binary cyclic code that has a generator g¢(z)
with g(z) | (™ — 1) mod2. This implies that C =
(9(z) 4+ 2p(z), 2a(z)) where p(x) is a binary polyno-
mial.

Note that with this construction g(x), and a(x) are
binary polynomials divisors of (" — 1) mod 2 rather
than mod 4.

Claim 1 We may assume dega(z) > degp(x), and
a(x) |g(x) mod 2.

Proof. Since

C = (g9(x)+2p(x), 2a(:§))
= (9(z) +2[p(z) + z'a(z)], 2a(x)),

then we may assume dega(x) > deg(p(z). Since
(2a(z)),

then a(z) |g(z). If g(z) = a(x), then C =
(9(x) +2p(z)). m

2¢(z) € kerp =

n

Claim 2 a(z)|p(z) (“”ﬂ—;)l) mod 2.

Proof.

@(xngl[g+2p]) = s0<2pxngl)

(2a) and hence,

€ kerp=

al (px _1> mod 2.
g
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Claim 3 If C = (g(z)+2p(x), 2a(x)) =
(h(x) + 2q(z), 2b(x)) then g(z) = h(z), a(r) = b(z)
and p(z) = g¢(x) mod a(x)).

Proof. From the construction of C' we have J =
{r(z): 2r(x) €kerp} = (a(z)) = (b(z)). Hence
a(z) = b(x).

Suppose € = (g(x) +2p(z), 2a(x))
(h(x) +2q(z), 2b(z)). Note that h(z) € ¢(C) =
(9(z)) . Hence h = g(z)a(x) and deg h(x) > deg g(x).
By the same means g(z) = h(x)8(z) = g(z)a(x)p(x)
and degg(z) > degh(z). Since g, and h are
factors of (z™—1)mod 2 and (z"—-1) fac-
tors uniquely over Zs into a product of irre-
ducible polynomials then a(x) = B(z) = 1 and
g(x) = h(x). Since g(z) + 2¢(z) € C, then
g(x) + 2¢q(x) = [g(z)+2p(z)] + 2a(zx)m(x). This

implies
2[q(x) — p(z)] = 2a(z)m(z)
Therefore p(z) = ¢(z) mod a(z)). m

Claim 4 If gcd(a(x),g(x)) =1, then C = (g(x

Proof. Suppose ged(a(x), g(x)) = 1, then ¢(x)a(x) +
s(x)g(x) = 1 = 2t(z)alx) + 2s(z)g(x) = 2 € C.
Therefore C = (g(x), 2). ®

Claim 5 Suppose n is odd, then C =
(9(x) + 2a(x))

(9(x), 2a(z)) =

Proof. Suppose a(x)|g(x) and a(z)|p(x) <xn — 1) .

n
Then g(z) = a(z)mi(xz) and p(zx) (%) =
a(x)mg(xz) Since n is odd then (2™ —1) fac-
tors uniquely as a product of distinct irre-
ducible polynomials.  This implies that a(x)
must be a factor of p(z). But p(x) has de-
gree less than a(z). Hence p( ) = O and C =
(9(x),2a(z)). Let h(z ) = ) + 2a(z) h(x) =

29(x) € (g(x)+2a(x)). Also, (xg > =
" —1
2 ——— )a(x) € + 2a Since n is odd
(55 ) ot@) < o)+ 20(0)).
n_1
then ged <ng’ g(x)) = 1, and hence there exist
some binary polynomials fi(x), fa(z) such that

(x;(_)l) f1(@) + g(@) fo(a)

9 (xﬂ—;)l) a(z)f1 + 29(x)a(z) f

€ (g+2a). Hence g(z) € (g + 2a) and
(9(x), 2a(x)) = (9(x) + 2a(z))

1

2a(z) =

C
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]
We can summarize the above by the following the-
orem.

Theorem 6 Let C be a cyclic code in R, =
Zylz])/ (™ —1). Then

1. If n is odd then R, is a principal ideal
ring and C = (g(z),2a(z)) = (g(z) + 2a(x))
where g(x), a(z) are binary polynomials with
a(z) |g(x) |(™ — 1) mod 2.

2. If n 1s not odd then
(a) If g(x) = a(z), then C' = (g(z) + 2p(x))

where  g(z), ]7)() are binary polyno-
mials with g(z)|(z" — 1) mod2, and
slnle) (S

() C = (9(x) + 2p(x), 2a(z)) where
g9(x), a(x), and p(x) are binary poly-
nomials with a(x)|g(x)|(z™ — 1) mod?2,
a(z)|p(z) <xTx)1 and

deg g(z) > dega(x) > degp(z).

3 Reversible Cyclic Codes

Definition 7 A cyclic code of length n over Z, will
be called reversible if Yu € C, then u" € C.

Lemma 8 Let f(z), g(x) be any two polynomials in
Zy, with deg f(xz) > deg g(x). Then (see [1] for the
proof)

1 [f(z)g(x)]" = f(x)*g(x)*
2. [f(@) +g(@)]" = f(z)" +ate8/ 4899 ().

Theorem 9 Let C = (fo +2f1) = (fo, 2f1) be a lin-
ear cyclic code of odd length n over Zy. Then C is
reversible cyclic code if and only if fo, and fi are
self-reciprocal.

, and

Proof. Let c¢(z) be an element in C. Then
c(x) = foly + 2f1ly for some polynomials Iy, lo where
deg(li(z) < n — deg(fo) — 1, and deg(lz(z)) <
deg(fo) — deg (f1) — 1. We may assume deg (c(z)) =
n — 1. C is reversible if and only if ¢*(x) € C' if and
only if

a"le(1/x) 2" (1) fo(1/) + 20 (1/2) f1(1/ )]
= [xn*deg(fo)flll (1/z)fe (x)}

+ 209 Ty (1) f1(2)"
() fo () + 205 (2) f1 ().
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Hence, C = (fo,2f1) C (fi(z)*, 2fi(x)*). Similarly
we get that (fo(z)*, 2f1(2)*) C (fo, 2f1), and hence
(fo(x)*, 2f1(x)*) = (fo, 2f1) = C. Therefore, C' is

reversible if and only if fy, and f; are self-reciprocal.
]

Theorem 10 Let C = (g(z)+2p(x)) or C =
(2a(x)) be a cyclic code where n is even. Then C
can not be reversible unless p(x) = 0.

Proof. Suppose C = (g(x)+ 2p(z)) is reversible.
Then C' mod(2) is a binary cyclic reversible code and
hence g(z) is self-reciprocal. This implies

(9(x) +2p(x))" = g

= lg(x) +2p(x)]m(z) € C

This implies that m(z) = 1, ¢ = 0, degp(z) =
deg g(x), and p(z) = p*(x). But degp(z) < deg g(x).
Therefore, C' can not be reversible. ®

(g(x) +2p(x), 2a(z))

Theorem 11 Suppose C =
with a(x)|g(z)|(z™—1), a|p (acﬂ—;)l and deg g(z) >
dega(z) > degp(x). C is a reversible cyclic code if

and only if

1. g(x), a(x) are self-reciprocal

2. a(z) | (2'p*(x) + p(x))

Proof. =) Suppose C is reversible cyclic code. The
binary codes (g(x)), (a(x)) must be reversible cyclic
codes and hence g(x), and a(x) are self-reciprocal.
Since C' is reversible then

(9() +2p(2))" = g"(x) +22'p"()
= g(@)+22"p*(2)
= (9(z) +2p(x)) mi(x) + 2a(x)my(x)

This implies that my(z) = 1 and 22'p*(z)
2p(z) = 2a(z)ma(z). Hence (a'p* +p) € a(x)
a| (z'p* +p)mod 2.

<) For C to be reversible it is suffices to show
(g9(z) +2p(x))*, and a*(z) are in C. Since a(z) is
self-reciprocal then a*(z) = a(z) € C. Also,

+
=

(9(x) +2p(2))" = g*(z) +22"p"(2) = g(x) + 22'p" (x)
= (9(z) + 2p()) + 2p(2) + 22'p* (z)
Since 2p(z) + 2z ip
eC ( p U)

Hence, C' is reversible. m
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4 Examples

o Length n = 8. (2% + 1) = (z + 1)® over Zs. Let
f = (z+1). The tables below give the genera-
tor polynomial for all reversible cyclic codes of

length 8.
Non-zero Generator polynomial (s) of C d(0)
1 1, or 2 1
2 (afi)wherea:1,2and1§i§4 2
3 (afi)whereazl,Zand5§i§6 4
4 (af7) where o =1, 2 8
5 (x+1,2) 1
6 (z24+1,2), (22 +1,2(z + 1)) 1,2
7 (= +1) +2,2(x+1)) 2
8 ((J:3+J:2+x+1),2) 1
9 (P2 +a+1),2(x+1)) 2
10 (P +2+2z+1)+2,2(x+1)) 2
11 ((x3+x2+x+1),2(x2+1)) 2
12 (P +a?+a+1)+2(@+1),2(2*+1)) 2
13 (1.2, (@ +1].2@+ 1)) 1.2
4] (@ +1)+22@+1), (@ +1).2@+1°) | 22
15 ((*+1)+22(+1)%) 2
16 ((x4 +1) + 22,2 (z + 1)2)
17 ((x4+1)+2(x+1),2(x+1)2> 2
18 ((e°+2*+2+1),2) 1
19 ((z°+2*+z+1),2(x+1)) 2
20 (& +a*+2+1)+22x+1)) 2
21 (> + 2 +2+1),2(2?+1)) 2
22 ((z°+2t+x+1)+2,2(z> 4+ 1)) 2
23 ((z°+2?+z+1),2(2 + 2%+ 2 +1)) 2
24| (@ +a'+2+1)+2@+1),2(z° +2° +3+1)) 2
25| (& +a'+2+1)+2@*+1),2(@° +2° +z+1)) 2
26| (2" +2t+2+1)+2(2° +2),2(° +22 + 2 + 1)) 2
27 (4o +2+1),2(z" +1)) 2
28 (e®+2*+z+1)+ (z+1),2(z* +1)) 2
29 (e°+2*+z+1) + (2% +2%),2(z* + 1)) 2

Table 1: Reversible Cyclic Codes of Length 8.
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Generator polynomial (s) of C d(C)
30 (" +a'+z+ 1)+ (@ +a> +2+1),2(* +1)) 2
31| ((a°+a*+224+1),2w+1)), ((a%+2*+22+1),2(x+1)) | 2,2
32 (242" +2°+1) +2,2(x +1)) 2
33 (2% 42" +2° +1),2(2" +1)) 2
34 (e +a+22+1)+2,2(a* +1)) 2
35 ((a®+2'+2%+1) +21,2(z + 1)) 2
36 ((@®+a+2°+1) +2(x+1),2(z* + 1)) 2
37 ((a®+a'+22+1),2( +2* + 3+ 1)) 2
38 ((e®+a'+22+1)+2(2*+1),2(@° +2° + v+ 1)) 2
39 ((a®+a2*+2" +1),2(=" +1)) 2
40 (242 +2°+1) +2(2° +1),2(z" + 1)) 2
41 ((2®+a*+2°+1) +2(2° + 2),2(z* + 1)) 2
42 (% +2'+2+1) +2(@% + 22 + 2+ 1),2(z" + 1)) 2
43 ((x®+at+2°+1) 2 +2* + 2+ 1)) 4
44 ((a®+2'+22+1) +2(2" +1),2(a° + 2 + 2+ 1)) 4
45 ((x7+x6+x5+x4+x3+x2+x+l),2) 1
46 ((z"+2%+a2°+at+ a3+ +2+1),2(x+1)) 2
47 ("+2+° +a' +a0° + 2"+ 2 4+1) +2,2(x + 1)) 2
48 (" +a%+2° +a' + a3+ 22 +2+1),2( +1)) 2
9] ("+2++a*+2°+2" +a+1) +2+1),2(2" + 1)) 2
50 | ((a"+a+a+a* +22 +27 +0+1) 2% +2” + 2+ 1)) 2
£l (" +a®+2° + 2 +2° +2° + o+ 1) +2(2 + 1), 5
22 + 22 +2+41))

52 (("+a+a° +a' +2° +2° + 2 41),2(2" +1)) 2
3| (@T+2%+a+at 427 +2” +o+1) +2(° +27 + 2+ 1), 5
2(z* +1))

54 ("4 4+ +a* +22 +2% + o +1) 20" + 2t + 2+ 1)) 4
x (" +a®+2° + 2 +2° +2° + o+ 1) +2(2* 4+ 1), A
22 +zt+241))

56 | ((z"4+a2°4+a2+a* +2° +2° +2+1),22% +2* +2° + 1)) 4
s | (@M 2%+ +at 42’ +ad to+1) +2(” + 2t + 2+ 1), A
2(z8 + 2t + 2% + 1))

Table 2: More Reversible Cyclic Codes of Length 8.
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e Length n = 9. We know that [8] J. L. Massey, “Reversible Codes,” Information

and Control, vol. 7, pp. 369-380, 1964

(z74+1) = (2% + 2® + 1) (2® + 2 + 1) (2+1) over Zs. PP
[9] V. Pless and Z. Qian, “Cyclic Codes and

Since the length n is odd and all the factors above Quadratic Residue Codes over Zy,” IEEE Trans.
are self-reciprocal polynomials then by Theorem Inform. Theory, vol. 42, no. 5, 15941600, 1996.
9, all the 27 cyclic codes of this length are re-

versible. [10] J.H. Van Lint, “Repeated-Root Cyclic Codes,”

IEEE Trans. Inform. Theory Theory, Vol. 37,

. No. 2, pp. 343-345, March 1991.
5 Conclusion Remarks

In this paper we studied reversible cyclic codes of
length n over Z,. We found a unique set of gener-
ators for theses codes as ideals in the ring R, =
Zylz]/ (™ —1). A list of all reversible cyclic codes
of lengths 8 and 9 is included in section 4. Open
problems include the study of reversible negacyclic
codes over Z4. Also it will be interesting to study
these codes over Zse.
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