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Abstract: The enumeration of Dyck paths according to the semilength and to various other parameters has been
studied extensively. In this paper, the statistics “numberof τ ’s” and “number ofτ ’s at low level” are studied for
every stringτ of length up to four. The corresponding generating functions are evaluated and used in order to
establish several enumerating results.
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1 Introduction
A wide range of articles dealing with the occurrence
of strings in Dyck paths appear frequently in the liter-
ature [2], [3], [5], [6], [7] and [11].

A Dyck pathof semilengthn is a lattice path
of N2 running from(0, 0) to (2n, 0), whose allowed
steps are the up diagonal step(1, 1) and the down di-
agonal step(1,−1). These steps are calledrise and
fall respectively.

It is clear that each Dyck path is coded by a word
α = a1a2 · · · a2n ∈ {u, d}∗, calledDyck word, so that
every rise (resp. fall) corresponds to the letteru (resp.
d); (see Fig. 1).

Figure 1: The Dyck pathuuudududdududduudd

Throughout this paper we denote withD the set
of all Dyck paths (or equivalently Dyck words). Fur-
thermore, the subset ofD that contains all the words
α of semilengthl(α) = n is denoted byDn. It is well-
known that|Dn| = Cn, whereCn = 1

n+1

(

2n
n

)

is the
n-th Catalan number (A00108 of [10]), with generat-
ing functionC(z), which satisfies the relation

zC2(z) − C(z) + 1 = 0.

Furthermore, applying a version of Lagrange in-
version formula [3] to the above equation, we obtain
that

[zn]Cs =
s

2n + s

(

2n + s

n

)

.

A word τ ∈ {u, d}∗, called in this contextstring,
occurs in a Dyck pathα if α = βτγ, whereβ, γ ∈
{u, d}∗. If the stringτ does not occur inα we say that
α avoidsτ .

For example, the Dyck path of Fig. 1 has three
occurrences ofudu, whereas it avoidsddd.

The statistic “number of occurrences ofτ ” has
been studied by several authors, for various stringsτ .
The main tool used for the study of this statistic is the
generating functionF (t, z) wheret counts the occur-
rences ofτ , andz counts the semilength of the Dyck
path. In other words we have

F (t, z) =
∞
∑

n=0

n
∑

k=0

ankt
kzn,

whereank is the number of allα ∈ Dn with k oc-
currences ofτ . In particular, we will denote with
an = an0 the number of allα ∈ Dn that avoidτ .

The strings of length 2, namelyuu, dd, ud and
du, have been studied extensively; it has been proved
(e.g., see [3]) that the corresponding statistics follow
the Narayana distribution (A001263 of [10]). More
generally, strings of length 2 have also been studied
for k-colored Motzkin paths in [9].

The strings of length 3, namelyuuu, uud, udu,
udd, duu, dud, ddu andddd, have also been studied
extensively.

By symmetry with respect to a vertical axis, the
statistics corresponding to each of the following pairs
of strings: {duu, ddu}, {udu, dud}, {uuu, ddd},
{uud, udd}, are equidistributed.

The stringτ = duu has been studied in [3] and
it has been proved that the corresponding statistic fol-
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lows the Touchard distribution, i.e.

ank = 2n−2k−1Ck

(

n − 1

2k

)

.

For a bijective proof of the above result see [1].
The stringτ = udu has been studied indepen-

dently in [7] and [11], and it has been proved that the
corresponding statistic follows the Donaghey distribu-
tion, i.e.

ank =

(

n − 1

k

)

Mn−1−k,

whereMn is then-th Motzkin number (A001006 of
[10]). For a bijective proof of the above result see [1].

It is known (A092107 of [10]) that forτ = uuu
the generating function satisfies the equation

z(t + z − tz)F 2 − (1 − z + tz)F + 1 = 0.

Furthermore, the number of all Dyck paths that avoid
τ is equal toMn. For a bijective proof of the last
statement see [1] or [11].

It seems that the stringτ = uud has not been
studied. For the evaluation of the generating function
F = F (t, z) in this case, we consider the first return
decomposition of a non-empty Dyck pathα = uβdγ,
whereβ, γ ∈ D and we observe that a new occur-
rence ofuud appears inα (in addition to the ones
contributed byβ, γ) iff β = udδ, whereδ ∈ D.

Thus, we have

F = 1 + z(tzF + F − zF )F,

which gives

z((t − 1)z + 1)F 2 − F + 1 = 0.

Furthermore, applying a version of Lagrange in-
version formula [3] to the above equation, we obtain
that

ank =
1

n+1

(

n+1
k

)

n−2k
∑

j=0

(

k+j−1
k−1

)(

n+1−k
n−2k−j

)

.

This number counts also the Dyck paths of semilength
n with k long ascents (A091156 of [10]).

In section 2, several new results in the same di-
rection are presented, referring to statistics for every
string of length 4.

In section 3, the corresponding statistics are stud-
ied for the occurrence of strings at low level.

An extended version of this article, with detailed
proofs, will be presented in a future work.

2 Strings of length 4
There exist sixteen stringsτ of length 4, yielding
ten cases to be studied, since by symmetry with
respect to a vertical axis, the statistics “number of
occurrences ofτ ” for some of them (given here in
pairs) are equidistributed:{uuud, uddd}, {uudd},
{udud}, {dduu}, {uuuu, dddd}, {uudu, dudd},
{uduu, ddud}, {uddu, duud}, {duuu, dddu},
{dudu}.

The statistics corresponding to strings of the first
four sets are known.

So the statistic of the stringτ = uuud is equidis-
tributed with the statistic “number of branch nodes at
odd height” in ordered trees ([4], A091958 of [10]).
The corresponding generating function satisfies the
equation

(t − 1)z3F 3 + zF 2 − F + 1 = 0;

it also holds that

ank = 1
n+1

(

n+1
k

)

[n
3
]−k
∑

j=0
(−1)j

(

n+1−k
j

)(

2n−3k−3j
n

)

.

Moreover, we note that the number of Dyck paths
of semilengthn that avoiduuud is counted by the
Motzkin numbers.

Forτ = uudd the corresponding generating func-
tion (A098978 of [10]) satisfies the equation

zF 2 + ((t − 1)z2 − 1)F + 1 = 0.

Furthermore, it can be proved that

ank =
[n
2
]−k
∑

j=0

(−1)j

n−(j+k)

(

n−(j+k)
j+k

)(2n−3(j+k)
n−(j+k)−1

)(

j+k
k

)

.

For the avoiding sequencean in this case, see
A086581 and A025242 of [10].

It is also known (A094507 of [10]) that for
τ = udud the corresponding generating function
satisfies the equation

z(1+(1−t)z)F 2−(1+(1−t)z(z+1))F+1+(1−t)z = 0,

while the avoiding sequence counts also the irre-
ducible stack sortable permutations (A078481 of
[10]).

Finally, it is known (A114492 of [10]) that for
τ = dduu the corresponding generating function sat-
isfies the equation

z(t+(1−t)z)F 2−(1+(1−t)(z−2)z)F+1−(1−t)z= 0.

We note that the avoiding sequence in this case is
equal to the avoiding sequence corresponding to the
stringτ = uudd, shifted by one unit.

We now come to study the remaining statistics.
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2.1 The string uuuu

It can be proved that the generating function of Dyck
paths according to the semilength and the number of
uuuu’s satisfies the equation

(1−t)z3F 3+z(t+z−tz)F 2+((1−t)z−1)F+1 = 0.

The first terms of the corresponding triangle
formed by the coefficients ofF , read by rows, are 1;
1; 2; 5; 13, 1; 36, 5, 1; 104, 21, 6, 1.

The avoiding sequence is given (A036765 of
[10]) by the formula

an =
1

n + 1

[n
2
]

∑

j=0

(

n + 1

n − 2j

)(

n + 1

j

)

.

A natural generalization of the above, is to con-
sider the stringτ = ur, for anyr ≥ 2. It can be proved
that the generating function of Dyck paths according
to the semilength and the number of occurrences ofur

satisfies the equation

F = 1 + tzF 2 + (1 − t)

r−1
∑

i=1

ziF i.

2.2 The strings uduu and uudu

It can be proved that the statistics corresponding to
the stringsuudu anduduu are equidistributed, with
generating function satisfying the equation

z(1 − (1 − t)z)F 2 + ((1 − t)z − 1)F + 1 = 0.

Furthermore, we have that

ank =
[n−1

2
]−k

∑

j=0

(−1)j

n−j−k

(

j+k
k

)(

n−j−k
j+k

)(2n−3j−3k
n−j−k+1

)

.

The first terms of the triangle, read by rows, are
1; 1; 2; 4, 1; 9, 5; 22, 19, 1; 57, 66, 9; 154, 221, 53, 1.

We note that the stringsurdu, for r ≥ 1, have
been studied recently in [6].

2.3 The string uddu

It can be proved that the generating function corre-
sponding to the stringτ = uddu satisfies the equation

zF 3−((1−t)z+1)F 2+(1+2(1−t)z)F−(1−t)z = 0.

The first terms of the triangle, read by rows, are
1; 1; 2; 4, 1; 9, 5; 23, 17, 2; 63, 54, 15; 178, 177, 69,
5; 514, 594, 273, 49.

2.4 The string duuu

It can be proved that the generating function corre-
sponding to the stringτ = duuu satisfies the equation

tzF 3+(3(1−t)z−1)F 2−(3(1−t)z−1)F+(1−t)z=0.

The first terms of the triangle, read by rows, are
1; 1; 2; 5; 13, 1; 35, 7; 96, 36; 267, 159, 3.

The avoiding sequencean counts also the directed
animals of sizen, as well as the Grand-Dyck paths
starting withu and avoidingudu (A005773 of [10]).

2.5 The string dudu

It can be proved that the statistic of the string
τ = dudu is equidistributed with the statistic “num-
ber of ascents of length 1 that start at an odd level”
(A102405 of [10]), with generating function that sat-
isfies the equation

zF 2 + ((1 − t)(z − 1)z − 1)F + (1 − t)z + 1 = 0.

The first terms of the triangle, read by rows, are
1; 1; 2; 4, 1; 10, 3, 1; 26, 12, 3, 1; 72, 41, 15, 3, 1;
206, 143, 58, 18, 3, 1.

Finally, it can be proved that the avoiding se-
quence is given by the formula

an =

[n

2 ]
∑

j=0

1
n−j

(

n−j
j

)

n−2j
∑

i=0

(

n−2j
i

)(

j+i
n−2j−i+1

)

.

3 Strings at low level
We say that a stringτ occurs at height0 in a Dyck
path if the stringτ in this appearance meets thex-
axis. An occurrence of a stringτ at height0 is usually
referred to as alow occurrence ofτ . For example, the
pathα of Fig. 1 has 2 low occurrences ofuu and 1
low occurrence ofddu.

In this section, we study the statistic “number of
low occurrences ofτ ” for various stringsτ . The main
tool used for the study of this statistic is the generating
function L(t, z), wheret counts the low occurrences
of τ , andz counts the semilength of the Dyck path. In
other words we have

L(t, z) =

∞
∑

n=0

n
∑

k=0

lnkt
kzn

wherelnk is the number of allα ∈ Dn with k low oc-
currences ofτ . In particular, we denote withln = ln0

the number of allα ∈ Dn that avoid low occurrences
of τ .

For strings of length2 we have:
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i. If τ = ud, then

L(t, z) =
1

1 − (t + C(z) − 1)z
,

with coefficients

lnk =

[n−k
2

]
∑

j=0

j

n − k − j

(

k + j

k

)(

2n − 2k − 2j

n − k

)

.

ii. If τ = du, then

L(t, z) = 1 +
zC(z)

1 − tzC(z)
,

with coefficients

lnk =
k + 1

2n − k − 1

(

2n − k − 1

n

)

.

iii. If τ = uu or τ = dd, then

L(t, z) =
C(z)

1 + (1 − t)z2C3(z)
,

with coefficients

lnk =

[n

2 ]−k
∑

j=0

(−1)j
3j+3k+1
n+j+k+1

(

j+k
k

)(

2n−j−k
n+j+k

)

.

The first two of the above formulas are given in
[3] and the third counts also the number of Dyck paths
with prescribed length and number of large compo-
nents (A097877 of [10]).

Among the strings of length3 only for τ = udu
the statistic “number of lowudu’s” is known [11],
with

L(t, z) = 1 +
zC(z)

1 + z(1 − C(z) − t)
,

and coefficients

lnk = 1
n−k

[n−k−1

2
]

∑

j=0
(2j + 1)

(

j+k
k

)(2n−2k−2j−2
n−k−1

)

.

3.1 The string uuu

For the evaluation of the generating function
L = L(t, z) for the caseτ = uuu, we consider
the partition{Ai} of D, whereA0 = {ǫ} andAi is
the set of all Dyck paths with length of the first ascent
equal toi, for every i ≥ 1. Clearly, every element
α of Ai, for i ≥ 1, can be written uniquely in the
form α = uidα1dα2 · · · dαi, whereaj ∈ D, for every
j ∈ [i]. Furthermore, the low occurrences ofuuu in
α, if i ≤ 2 are the same to those ofαi, whereas for

i ≥ 3 we have a new low occurrence; thus we have
that

L = 1 +
2
∑

i=1
ziCi−1(z)L + t

∞
∑

i=3
ziCi−1(z)L

= 1 +

(

zC(z) − (1 − t)
∞
∑

i=3
ziCi−1(z)

)

L

= 1 +
(

zC(z) − (1 − t) z3C2(z)
1−zC(z)

)

L

= 1 +
(

zC(z) − (1 − t)z3C3(z)
)

L.
It follows that

L(t, z) =
C(z)

1 + (1 − t)z3C4(z)
.

If we expand the above generating func-
tion into a geometric series and use the for-
mula that gives the powers of the Catalan gen-
erating function, we obtain that the number of
all α ∈ Dn with k low uuu’s is equal to

lnk =

[n

3 ]−k
∑

j=0

(−1)j
4j+4k+1
n+j+k+1

(

j+k
k

)(

2n−2j−2k
n+j+k

)

.

The first terms of the triangle, read by rows, are
1; 1; 2; 4, 1; 9, 5; 22, 20; 58, 73, 1; 163, 257, 9; 483,
893, 54; 1494, 3097, 270, 1; 4783, 10779, 1221, 13.

The avoiding sequenceln counts also the num-
ber of Dyck paths of semilengthn with no peak at
height 3 ([8], A059019 of [10]) as well as the num-
ber of Dyck paths of semilengthn with no valleys at
height 1 (A114489 of [10]).

3.2 The string duu

For the evaluation of the generating function
L = L(t, z) for the caseτ = duu we consider the
decomposition of a non-empty Dyck pathα = βuγd,
whereβ, γ ∈ D and we observe that a new occurrence
of duu appears inα iff β, γ 6= ǫ; thus we have that

L = 1 + zt(L − 1)(C(z) − 1) + zC(z) + z(L − 1),

which, after some simple manipulations gives

L(t, z) = 1 +
zC2(z)

1 + (1 − t)z2C3(z)

and

lnk =
[n−1

2
]−k

∑

j=0
(−1)j 3j+3k+2

2n−j−k

(

j+k
k

)( 2n−j−k
n+j+k+1

)

.

The first terms of the triangle, read by rows, are
1; 1; 2; 4, 1; 9, 5; 23, 18, 1; 65, 59, 8; 197, 190, 41, 1;
626, 618, 175, 11; 2056, 2047, 685, 73, 1.

The avoiding sequenceln counts also the par-
tial partial sums of the Catalan numbers (A014137 of
[10]).
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3.3 The string uud

For the evaluation of the generating function
L = L(t, z) for the caseτ = uud we consider
the first return decomposition of a non-empty Dyck
pathα = uβdγ, whereβ, γ ∈ D and we observe that
a new occurrence ofuud appears inα iff β = udδ,
whereδ ∈ D; thus we have that

L = 1 + z(tzC(z) + C(z) − zC(z))L,

which gives

L(t, z) =
C(z)

1 + (1 − t)z2C2(z)

and

lnk = 1
n+1

[n
2
]−k
∑

j=0
(−1)j(2j + 2k + 1)

(

j+k
k

)(2n−2j−2k
n

)

.

The first terms of the triangle, read by rows, are
1; 1; 1, 1; 2, 3; 6, 7, 1; 19, 18, 5; 61, 53, 17, 1; 200,
168, 54, 7; 670, 552, 176, 31, 1.

The avoiding sequenceln counts also the number
of Dyck paths of semilengthn that start with a pyra-
mid followed by a pyramid-free Dyck path (A035929
of [10]).

3.4 Strings of length 4
We conclude by giving, without proofs, the generating
functionL(t, z) for every string of length4.

i. Forτ = uuuu we have that

L(t, z) =
C(z)

1 + (1 − t)z4C5(z)
,

with coefficients

lnk =

[n

4 ]−k
∑

j=0

(−1)j
5j+5k+1
n+j+k+1

(

j+k
k

)(

2n−3j−3k
n+j+k

)

.

The first terms of the triangle, read by rows, are
1; 1; 2; 5; 13, 1; 36, 6; 105, 27; 319, 110; 1002, 427,
1; 3235, 1616, 11; 10685, 6034, 77.

More generally, it can be proved that forτ = ur,
wherer ∈ N∗ we have

L(t, z) =
C(z)

1 + (1 − t)zrCr+1(z)
,

with coefficients

lnk =
[n

r ]−k
∑

j=0
(−1)j (r+1)(j+1)+1

n+j+k+1

(

j+k
k

)(2n−(r−1)(j+k)
n+j+k

)

.

ii. For τ = uudd it is known (A1144086 in [10])
that

L(t, z) =
C(z)

1 + (1 − t)z2C(z)
.

Furthermore, it can be proved that the correspond-
ing coefficients are equal to

lnk =

[n

2 ]−k
∑

j=0

(−1)j
j+k+1

n−j−k+1

(

j+1
k

)(

2n−3j−3k
n−j−k

)

.

The first terms of the triangle, read by rows, are
1; 1; 1, 1; 3, 2; 10, 3, 1; 31, 8, 3; 98, 27, 6, 1; 321, 88,
16, 4; 1078, 287, 54, 10, 1; 3686, 960, 183, 28, 5.

iii. For τ = uddu we have that

L(t, z) = 1 +
zC2(z)

1 + (1 − t)z2C2(z)
,

with coefficients

lnk = 2(k+1)
n+1

[n−1

2
]−k

∑

j=0
(−1)j

(

j+k+1
k+1

)(

2n−2j−2k−1
n

)

.

The first terms of the triangle, read by rows, are
1; 1; 2; 4, 1; 10, 4; 29, 12, 1; 90, 36, 6; 290, 114, 24,
1; 960, 376, 86, 8; 3246, 1272, 303, 40, 1.

iv. For τ = dduu we have that

L(t, z) =
C(z)(1 + (1 − t)z2C2(z))

1 + (1 − t)(1 − z)z2C3(z)
.

The first terms of the triangle, read by rows, are
1; 1; 2; 5; 13, 1; 36, 6; 106, 25, 1; 327, 94, 8.

v. Forτ = uudu it is known that

L(t, z) =
C(z)

1 + (1 − t)z3C3(z)
.

This result is given in [6] in a more general setup.
It follows easily that the corresponding coeffi-

cients are equal to

lnk = 1
n+1

[ n
3
]−k
∑

j=0
(−1)j(3j + 3k + 1)

(

j+k
k

)(2n−3j−3k
n

)

.

The first terms of the triangle, read by rows, are
1; 1; 2; 4, 1; 10, 4; 28, 14; 85, 46, 1; 271, 151, 7; 893,
502, 35; 3013, 1697, 151, 1; 10351, 5828, 607, 10.

It can be proved bijectively that the statistics
“number of low uudu’s”, “number of low uuud’s”
and “number of lowuduu’s” are equidistributed.

vi. For τ = duuu we have that

L(t, z) = 1 +
zC2(z)

1 + (1 − t)z3C4(z)
,

with coefficients

lnk =
[n−1

3
]−k

∑

j=0
(−1)j 2j+2k+1

n−j−k+1

(

j+k
k

)(2n−2j−2k−1
n−j−k

)

.

The first terms of the triangle, read by rows, are
1; 1; 2; 5; 13, 1; 36, 6; 105, 27; 320, 108, 1; 1011,
409, 10; 3289, 1508, 65; 10957, 5491, 347, 1.
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vii. For τ = udud we have that

L(t, z) =
(1 + (1 − t)z)C(z)

1 + (1 − t)z(1 + zC(z))
.

The first terms of the triangle, read by rows, are
1; 1; 1, 1; 4, 1; 11, 2, 1; 33, 6, 2, 1; 105, 17, 7, 2, 1;
343, 56, 19, 8, 2, 1; 1148, 185, 64, 21, 9, 2, 1.

viii. Forτ = dudu we have that

L(t, z) = 1 + zC(z) +
z2C3(z)

1 + (1 − t)zC(z)
,

with coefficients

lnk =δ0kcn−1 +
n−k−2

∑

j=0
(−1)j k+j+3

n+1

(

j+k
k

)(

2n−k−j−2
n

)

.

The first terms of the triangle, read by rows, are
1; 1; 2; 4, 1; 11, 2, 1; 32, 7, 2, 1; 99, 22, 8, 2, 1; 318,
73, 26, 9, 2, 1; 1051, 246, 90, 30, 10, 2, 1.
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