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Abstract: This article is concerned with a new fourth-order implicit time-stepping scheme for the simulation of
acoustic waves. For an enhanced efficiency, the new scheme is incorporated with a locally one-dimensional (LOD)
procedure. Its stability and accuracy are analyzed and compared with those of the standard explicit fourth-order
scheme. It has been observed from various experiments that the computational cost of the implicit LOD algorithm
is only about 40% higher than that of the explicit method, for the problems of the same size in two space variables;
the implicit procedure produces less dispersive solutions in heterogeneous media.
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1. Introduction

Let Ω ⊂ IRm, 1 ≤ m ≤ 3, be a bounded domain
with its boundary Γ = ∂Ω and J = (0, T ], T > 0.
Consider the following acoustic wave equation

(a)
1
c2

utt − ∆u = S(x, t), (x, t) ∈ Ω × J,

(b)
1
c
ut + uν = 0, (x, t) ∈ Γ × J,

(c) u(x, 0) = g0(x), ut(x, 0) = g1(x), x ∈ Ω,
(1)

where c = c(x) > 0 denotes the normal velocity of
the wavefront, S is the wave source/sink, ν denote the
unit outer normal from Γ, and g0 and g1 are initial data.
Equation (1.b) is popular as a simple-but-effective ab-
sorbing boundary condition (ABC), since introduced
by Clayton and Engquist [3].

Equation (1) has been extensively studied as a model
problem for second-order hyperbolic problems; see e.g.
[1, 2, 5, 10, 12]. It is often the case that the source is
given in the following form

S(x, t) = δ(x − xs)f(t),

where xs ∈ Ω is the source point. For the function f ,
the Ricker wavelet of frequency λ can be chosen, i.e.,

f(t) = π2λ2 (1 − 2π2λ2t2) e−π2λ2t2 .

In Geophysical applications, the wave equation
(1) is often solved by explicit time-stepping schemes,
which require to choose the time step size sufficiently
small to satisfy the stability condition and to reduce

numerical dispersion as well. An alternative conven-
tional approach for solving wave equations introduces
an auxiliary variable to rewrite the equation as a first-
order hyperbolic system. With the approach one in-
troduces a new unknown, which results in an increase
in the number of variables in the discrete problems.
Thus, there are good reasons to try to keep the for-
mulation involving the second time-derivative and a
scalar unknown. However, it has been known that
with this formulation it is hard to construct numerical
methods having desirable properties in both stability
and high-order accuracy [9]. In this paper we shall in-
troduce a one-parameter family of three-level methods
incorporating the LOD time-stepping procedure for an
efficient simulation of (1). It is analyzed to be uncon-
ditionally stable for the parameter in a certain range.

2. Preliminaries

In this section, we review conventional methods
for the numerical solution of (1). Let A denote an ap-
proximation of −∆ of order p, i.e.,

Au ≈ −∆u + O(hp),

where h is the grid size; in most cases, p is 2 or 4.
Then, the semi-discrete equation for the acoustic wave
equation reads

1
c2

vtt + Av = S. (2)

Now, let ∆t be the time step size and tn = n∆t. Set
vn(x) = v(x, tn). For a simpler presentation, we de-
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fine the following difference operator

∂ttv
n :=

vn+1 − 2vn + vn−1

∆t2
.

2.1. Explicit schemes
Explicit methods are still popular in the simula-

tion of waveforms. We begin with the second-order
scheme (in time) formulated as

1
c2

∂ttv
n + Avn = Sn. (3)

As a stability constraint, the scheme requires to choose
∆t = O(h). The scheme (3) works well for smooth
solutions, but otherwise it can introduce severe non-
physical oscillations.

To formulate the fourth-order scheme, consider
the Taylor expansion

vtt(tn) ≈ ∂ttv
n − ∆t2

12
vtttt(tn) + O(∆t4). (4)

It follows from (2) that

vtttt(tn) = c2(Sn
tt −Avn

tt)
= c2[Sn

tt −A(c2(Sn −Avn)) ].
(5)

From (4) and (5), the explicit fourth-order algorithm
can be formulated as

1
c2

∂ttv
n + A

(
vn − ∆t2

12
c2Avn

)

= Sn +
∆t2

12
(∂ttS

n −Ac2Sn).
(6)

See [4, 5, 13] for details.

2.2. Two-level implicit schemes
Rewrite the system (2) as

ηt + Av = S,
1
c2

vt − η = 0, (7)

where η is an auxiliary variable. Then, the two-level
implicit scheme can be formulated as follows [9]:

(a)
ηn+1 − ηn

∆t
+ A[αvn+1 + (1 − α)vn] = Sn+α,

(b)
1
c2

vn+1 − vn

∆t
− [βηn+1 + (1 − β)ηn] = 0,

(8)
where α and β are algorithm parameters, 0 ≤ α, β ≤
1, and Sn+α = αSn+1 + (1 − α)Sn. In the litera-
ture, the following is well known for the two-level al-
gorithm (see e.g. [9, §9.11]):

• The algorithm (8) is unconditionally stable when
α, β ≥ 0.5.

• It is second-order if (α, β) = (0.5, 0.5), for ex-
ample.

• It coincides with the explicit second-order
scheme (3) when (α, β) = (0, 1).

The case (α, β) = (0.5, 0.5) is particularly interest-
ing, because it allows the algorithm to be both second-
order accurate (in time) and unconditionally stable. For
an efficient implementation, (8) can be reformulated
as follows. Multiply (8.a) and (8.b) by β∆t2 and ∆t,
respectively, and add the resulting equations to have

( 1
c2

+ αβ∆t2A
)
vn+1 =

( 1
c2

− (1 − α)β∆t2A
)
vn

+∆t ηn + β∆t2Sn+α.
(9)

Along with (8.b) and η0 = v0
t /c

2 = g1/c
2, the above

equation solves the problem.
For a purpose of comparison with the three-level

algorithms to be presented in Section 3, we reformu-
late (8), by eliminating η, as follows: for n ≥ 1,

1
c2

∂ttv
n + A[αβvn+1 + (α + β − 2αβ)vn

+(1 − α)(1 − β)vn−1]
= βSn+α + (1 − β)Sn−1+α.

(10)

3. New Approaches

This section introduces one-parameter family of
three-level implicit schemes for (1) and its LOD proce-
dure. We will close the section with a certain parame-
ter which makes the algorithm a fourth-order accuracy
in time.

3.1. A three-level implicit method

We suggest a three-level implicit time-stepping al-
gorithm for the acoustic wave equation (1) as follows:
Given v0, · · · , vn, n ≥ 1, find vn+1 by solving

1
c2

∂ttv
n + A

(
θvn+1 + (1 − 2θ)vn + θvn−1

)
= Sn + θ∆t2∂ttS

n,
(11)

where θ is an algorithm parameter to be selected in
[0, 0.5]. One can verify the following:

• The truncation error of (11) is O(∆t2 + hp) for
θ ∈ [0, 0.5].

• When θ = 0, (11) turns out to be the second-
order explicit scheme (3).
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• When θ = 1/12, the truncation error of (11)
becomes O(∆t4 + hp). (See §3.3 below.)

• The algorithm is unconditionally stable when
θ ∈ [0.25, 0.5]. (See Theorem 1 below.)

• From a comparison between (10) and (11), we
can see that the two-level and three-level im-
plicit algorithms are equivalent to each other,
when α = β = 0.5 and θ = 0.25.

• They are also equivalent when α = r1, β = r2,
and θ = 1/12, where r1 and r2 are the two zeros
of x2 − x + 1/12 = 0. With these parameters,
the algorithms are fourth-order accurate in time.

The implicit method (11) requires an appropriate
initialization for v1. Recall the initial conditions given
in (1.c) and the Taylor series expansion

u1 = u0 + ∆tu0
t +

∆t2

2
u0

tt +
∆t3

3!
u0

ttt

+
∆t4

4!
u0

tttt + O(∆t5).
(12)

Consider the equalities

u0
t = g1,

u0
tt = c2(S0 −Ag0),

u0
ttt = c2(S0

t −Ag1),
u0

tttt = c2[S0
tt −A(c2(S0 −Ag0))],

(13)

and approximations

S0
t ≈ −3S0 + 4S1 − S2

2∆t
+ O(∆t2),

S0
tt ≈ S0 − 2S1 + S2

∆t2
+ O(∆t).

(14)

Then, it follows from (12)-(14) that

(a) v1 ≈ g0 + ∆tg1 +
∆t2c2

2
(S0 −Ag0)

+O(∆t3),

(b) v1 ≈ g0 + ∆tg1 +
∆t2c2

2

[ 7S0 + 6S1 − S2

12

−A
(
g0 +

∆t

3
g1 +

∆t2c2

12
(S0 −Ag0)

)]
+O(∆t5).

(15)
The initial values in (15.a) and (15.b) can be adopted
respectively for the second- and fourth-order methods
in time.

3.2. The LOD procedure

In many applications including Geophysical ones,
the domain is rectangular or cubic. To solve the im-
plicit algorithm (11) efficiently in these regular do-
mains, we can adopt a locally one-dimensional (LOD)
method, in particular, the alternating direction implicit
(ADI) method [6, 7, 8, 11]. We will formulate the
LOD procedure for 3D problems. Decompose A into
the three directional operators A�, 
 = 1, 2, 3, i.e.,

A = A1 + A2 + A3,

where A� is the pth-order finite difference (FD) ap-
proximation of −∂x�x�

. Then, an LOD time-stepping
procedure for (11) can be constructed as follows. Given
w0, · · · , wn, we first approximate the solution at tn+1

by the explicit scheme:

1
c2

wn+1,0 − 2wn + wn−1

∆t2
+Awn = Sn+θ∆t2∂ttS

n,

(16)
and then apply the implicit directional sweeps

1
c2

wn+1,1 − wn+1,0

∆t2
+ θA1

(
wn+1,1 − w̃n

)
= 0,

1
c2

wn+1,2 − wn+1,1

∆t2
+ θA2

(
wn+1,2 − w̃n

)
= 0,

1
c2

wn+1 − wn+1,2

∆t2
+ θA3

(
wn+1,3 − w̃n

)
= 0,

(17)
where w̃n = 2wn − wn−1.

To find the splitting error involved during the LOD
perturbation, we will eliminate the intermediate values
in (16)-(17). Adding the four equations in (16)-(17),
followed by some algebra, reads

1
c2

∂ttw
n + A

(
θwn+1 + (1 − 2θ)wn + θwn−1

)
+Bθ(wn+1 − 2wn + wn−1) = Sn + θ∆t2∂ttS

n,
(18)

where

Bθ = θ2∆t2c2(A1A2 + A1A3 + A2A3)
+θ3(∆t2c2)2 A1A2A3.

Compared with (11), the LOD algorithm (16)-(17) in-
corporates an extra term Bθ(wn+1 − 2wn + wn−1),
which is the splitting error. Since (wn+1 − 2wn +
wn−1) = O(∆t2) for sufficiently smooth solutions,
the splitting error turns out to be fourth-order in time,
i.e.,

Bθ(wn+1 − 2wn + wn−1) = O(∆t4). (19)
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Fig. 1. The FD stencils, depicted in one space variable, for the fourth-order explicit scheme (left) and the fourth-
order implicit scheme (right).

Thus the LOD algorithm (16)-(17) solves the three-
level implicit FD equation (11) accurately, with an ex-
tra error (splitting error) in O(∆t4). For 2D problems,
the last sweep in (17) must be omitted and wn+1,2 be-
comes the solution in the new time level, i.e., wn+1 =
wn+1,2.

The LOD algorithm presented in (16)-(17) can be
implemented as follows:

w̃n = 2wn − wn−1,

wn+1,0 = w̃n + ∆t2c2(Sn + θ∆t2∂ttS
n −Awn),

(I + θ∆t2c2A1)wn+1,1 = wn+1,0 + θ∆t2c2A1w̃
n,

(I + θ∆t2c2A2)wn+1,2 = wn+1,1 + θ∆t2c2A2w̃
n,

(I + θ∆t2c2A3)wn+1 = wn+1,2 + θ∆t2c2A3w̃
n.

(20)
The three-level implicit algorithm (11) and its LOD

procedure (16)-(17) can be analyzed for stability. We
present a stability analysis; the proof will appear else-
where.

Theorem 1. Let θ ∈ [0.25, 0.5]. Then (11) and its
LOD procedure (16)-(17) are unconditionally stable.

3.3. Fourth-order accuracy in time (θ = 1/12)

When θ = 1/12, the algorithms (11) and (16)-
(17) become fourth-order in time. To see this, recall
the Taylor expansion for vtt(tn) in (4). Utilize

vtttt(tn) = c2(Sn
tt −Avn

tt) (21)

to rewrite (4) as

vtt(tn) ≈ ∂ttv
n − ∆t2

12
c2(Sn

tt −Avn
tt) + O(∆t4)

≈ ∂ttv
n − ∆t2

12
c2 ∂ttS

n

+
c2

12
A(vn+1 − 2vn + vn−1) + O(∆t4),

(22)
where the central second-order approximations are ap-
plied for Sn

tt and vn
tt. Thus a fourth-order time-stepping

algorithm can be formulated as

1
c2

∂ttv
n +

1
12

A(vn+1 − 2vn + vn−1) + Avn

= Sn +
∆t2

12
∂ttS

n,

(23)
which is identical to (11) when θ = 1/12. The LOD
variant of (23) clearly reads

1
c2

∂ttv
n +

1
12

A(vn+1 − 2vn + vn−1) + Avn

+B1/12(v
n+1 − 2vn + vn−1) = Sn +

∆t2

12
∂ttS

n,

(24)
which is equivalent to (16)-(17) when θ = 1/12.

Remark. The fourth-order explicit scheme utilizes
the identity (5) for the approximation of vtttt, while
the new implicit method employs (21). As a result, the
new implicit method adopts a more compact set of grid
points in the FD approximation. See Figure 1, where
the FD stencils are depicted for the fourth-order ex-
plicit scheme (left) and the fourth-order implicit
scheme (right), in one space variable.

4. Numerical Experiments

The fourth-order explicit method (6) and the LOD
algorithm (20) are implemented for the acoustic wave
equation in two space variables. For the spatial deriva-
tives, the fourth-order FD scheme is adopted for both
algorithms.

Figure 2 presents a vertical section of a real veloc-
ity in the Gulf of Mexico (left), provided from Shell
Offshore Inc., and the snapshots of the numerical so-
lution at t = 2.2 for the fourth-order explicit method
(center) and the fourth-order LOD (right). For the
point source, a Ricker wavelet of 10Hz (λ = 10) is
located at the center of the top edge (xs = (4.57, 0)).
Since the velocity c(x) ∈ [1.50, 4.42] (Km/sec), the
wavelength (:= c/λ) varies between 150 and 442 me-
ters. The velocity model contains 240×160 cells of the
edge length 38.1 meters (h = 38.1). Thus the grid fre-
quency Gf (the number of grid points per wavelength)
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Fig. 2. The velocity (left) and the snapshots at t = 2.2 for the fourth-order explicit method (center), and the
fourth-order LOD (θ = 1/12) (right). The fourth-order central FD scheme is applied for the spatial derivatives for
all cases.
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Fig. 3. The traces seen at x = (3.01, 3.01) (left) and x = (6.21, 1.03) (right). The solid and dashed curves
correspond to LOD(θ = 1/12) and the fourth-order explicit methods, respectively.

becomes 3.94 ∼ 11.60. The time step size ∆t is se-
lected for the Courant number σ near to 0.75 such that
2.2 is an integer multiple of ∆t, i.e.,

σ :=
∆t ‖c‖∞

h
≈ 0.75,

where ‖c‖∞ denotes the maximum of the velocity c.
(The total number of timesteps is 341.)

The solutions from the fourth-order methods hardly
differ from each other; the implicit LOD (θ = 1/12)
method seems producing a slightly sharper solution
than the fourth-order explicit method.

To see the differences in detail, the traces are ob-
served and compared at a few points. Figure 3 con-
tains the traces recorded at x = (3.01, 3.01) (left) and
x = (6.21, 1.03) (right), where the waveform is ex-
pected to oscillate a lot due to sudden changes in ve-
locity and therefore strong reflections. The solid and
dashed curves correspond to LOD(θ = 1/12) and the

fourth-order explicit methods, respectively. As one
can see from the figure, the solutions obtained from
the two fourth-order methods match each other quite
well. It has been observed from various experiments
(not presented here) that

• The implicit method shows a similar numerical
stability as the explicit scheme. That is, insta-
bility has been observed for a similarly large ∆t
for both methods. Thus the implicit method may
not gain efficiency over the explicit method by
choosing a larger time step size. They have been
stable for most cases when the Courant number
σ ≤ 0.7 ∼ 1.0.

• The implicit method takes about 40% more com-
putation time than the explicit method for 2D
problems of the same size, in practice.

• The fourth-order LOD method is less dispersive;
it often produces a solution of less nonphysical
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oscillation than the fourth-order explicit scheme.
It can be advantageous for the numerical solu-
tion in very oscillatory media.

• Second-order methods (in time) produce more
dissipative solutions than fourth-order methods.
Thus second-order methods are less attractive,
although they can be unconditionally stable. A
sharp resolution of wavefronts is often very im-
portant in wave simulation.

5. Conclusions

We have introduced one-parameter family of three-
level implicit FD schemes for the numerical solution
of the acoustic wave equation. For an efficient sim-
ulation, a locally one-dimensional (LOD) procedure,
having the splitting error in O(∆t4), has been adopted.
It has been analyzed to be unconditionally stable (but
second-order in time) when the parameter is in a cer-
tain range (θ ∈ [0.25, 0.5]). Also we have seen that the
algorithm is fourth-order in time when θ = 1/12. The
new algorithm is compared with the conventional two-
level implicit methods; parameters are found such that
the methods are equivalent to each other with either
second- or fourth-order accuracy in time. The three-
level fourth-order implicit method is compared with
the standard (three-level) explicit method in numerical
stability, accuracy, and efficiency:

• The implicit method shows a similar stability
condition as the explicit scheme, in practice.

• The implicit method turns out to be 40% more
expensive than the explicit method for 2D prob-
lems of the same size.

• The implicit method introduces a less nonphys-
ical oscillation (dispersion). Due to this prop-
erty, the implicit scheme can be advantageous
over the explicit scheme for the waveform sim-
ulation in very oscillatory media.
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