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Abstract: Some new properties of the eigenvalues of the subdirect sums are presented for the particular case of
1-subdirect sums. In particular, it is shown that if an eigenvalue λ is associated with certain blocks of matrix A
or matrix B then λ is also an eigenvalue associated with the 1-subdirect sum A ⊕1 B. Some results concerning
eigenvectors of the k-subdirect sum A ⊕k B for an arbitrary positive integer k are also given.
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1 Introduction
The concept of k-subdirect sum of matrices, intro-
duced in [4], appears naturally in several contexts re-
lated to square matrices: e.g., matrix completion prob-
lems, analysis of matrix classes, overlapping subdo-
mains in domain decomposition methods, global stiff-
ness matrix in FEM, etc; see [4], [2], [1] and the ref-
erences therein.

The characterization of the invertibility of the
subdirect sum of two nonsingular matrices have been
studied recently [1]. In the particular case of a 1-
subdirect sum it is known that the 1-subdirect sum of
two singular matrices is a singular matrix [4]. We
present some new properties of the eigenvalues of
1-subdirect sums, which has relevance in some in-
stances; see [4] and the references therein for details.
We also give some results concerning eigenvectors of
the subdirect sums.

2 Subdirect sums
Let A and B be two square matrices of order n1 and
n2, respectively, and let k be an integer such that 1 ≤
k ≤ min(n1, n2). Let A and B be partitioned into
2 × 2 blocks as follows,

A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
, (1)

where A22 and B11 are square matrices of order k.
Following [4], we call the following square matrix of
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order n = n1 + n2 − k,

C =


 A11 A12 O

A21 A22 + B11 B12

O B21 B22


 (2)

the k-subdirect sum of A and B and denote it by C =
A ⊕k B.

2.1 Eigenvalues of 1-subdirect sums
The particular case of k = 1, i.e., a 1-subdirect sum,
is important in certain applications (see [4] and the
references therein). We denote as σ(A) the spectrum
(i.e., the set of eigenvalues) of a matrix A. Some first
properties of the eigenvalues of 1-subdirect sums can
be summarized as follows.

Theorem 1 Let A and B be matrices of order n1 and
n2, respectively, partitioned as in (1) and let k = 1.
Let C = A⊕1B. Then any of the following statements

i) λ ∈ σ(A) ∩ σ(A11)

ii) λ ∈ σ(A11) ∩ σ(B22)

iii) λ ∈ σ(B) ∩ σ(B22)

implies that λ ∈ σ(C).

Proof. Let us denote a22 = A22 and b11 = B11 to
display that this quantities are matrices of order 1× 1.
A direct computation shows that

det(C −λI) =

=


 A11 − λI A12 O

A21 a22 + b11 − λ B12

O B21 B22 − λI




(3)
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and expanding the n1th-row as a sum of the rows
(A21, a22 − λ, 0) and (0, b11, B12) we have

det(C − λI) =

det


 A11 − λI A12 O

A21 a22 − λ 0
O B21 B22 − λI


 +

det


 A11 − λI A12 O

0 b11 B12

O B21 B22 − λI


 ,

which leads to

det(C − λI) =

det(A − λI)det(B22 − λI)+

det(A11 − λI)det

[
b11 B12

B21 B22 − λI

]
,

(4)
and from this expression we have that each of the
statements (i) and (ii) implies λ ∈ σ(C). To prove
(iii) the technique is the same but now we expand
the n1th-row of equation (3) as a sum of the rows
(A21, a22, 0) and (0, b11 − λ,B12) to finally get

det(C − λI) =

det

[
A11 − λI A12

A21 a22

]
det(B22 − λI)+

det(A11 − λI)det(B − λI),
(5)

from which we conclude that statement (iii) implies
λ ∈ σ(C).

Example 2 Given the matrices

A11 =


 1 −1 4

3 2 −1
2 1 −1


 , A =




5
A11 4

3
1 0 1 5




B =




3 1 0 1
2 6 3 0
1 −2 5 −1
1 −1 1 4




the spectra of A and A11 are

σ(A) = {−2, 1, 1, 7}, σ(A11) = {−2, 1, 3}

and we obtain that the 1-subdirect sum

C = A ⊕1 B =




1 −1 4 5 0 0 0
3 2 −1 4 0 0 0
2 1 −1 3 0 0 0
1 0 1 8 1 0 1
0 0 0 2 6 3 0
0 0 0 1 −2 5 −1
0 0 0 1 −1 1 4




has the eigenvalues

σ(C) ≈ {9.8, −2, 1, 1.7 , 4.9 ± 2.4i, 4.7}
and according to theorem 1, since the eigenvalues −2
and 1 are common to A and A11 they are also eigen-
values of C .

Example 3 Given the matrix A of example 2 and ma-
trix

B =




4 1 2 −1
2

−2 B22

1




with B22 =


 3 5 −5

−1 −3 7
−1 −1 5


 , the spectra of B and

B22 are σ(B) ≈ {−1.5, 4.8, 2.8 ± 1.0i}, σ(B22) =
{−2, 3, 4}, and we obtain that the 1-subdirect sum

C = A⊕1B =




1 −1 4 5 0 0 0
3 2 −1 4 0 0 0
2 1 −1 3 0 0 0
1 0 1 9 1 2 −1
0 0 0 2 3 5 −5
0 0 0 −2 −1 −3 7
0 0 0 1 −1 −1 5




has the eigenvalues

σ(C) ≈ {9.9,−2,−1.7, 3.8, 1, 1, 3},
and according to theorem 1, since the eigenvalues −2
and 3 are common to A11 and B22 they are also eigen-
values of C .

It is easy to find examples such that λ ∈ σ(A) ∩
σ(B) but λ /∈ σ(A ⊕1 B). Indeed, although σ(A) =
σ(B) we can not ensure that A⊕1 B shares eigenval-
ues with A and B, as we show in the next example.

Example 4 Given the matrices

A =


 2 1 1

−8 3 9
8 1 −5


 , B =


 −3 −13 10

−5 −11 10
−6 −14 14



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with the same spectrum, σ(A) = σ(B) = {2, 4,−6},
we have, notwithstanding, that the 1-subdirect sum

C = A ⊕1 B =




2 1 1 0 0
−8 3 9 0 0

8 1 −8 −13 10
0 0 −5 −11 10
0 0 −6 −14 14




has not even one eigenvalue in common with A and
B, since σ(C) ≈ {−10.1, 0, 0.8, 4.6 ± 1.3i}.

There is a particular case in which λ ∈ σ(A) ∩
σ(B) implies λ ∈ σ(A ⊕1 B). This happens when
λ = 0 as we state in the following result.

Corollary 5 Let A and B be matrices of order n1 and
n2, respectively, partitioned as in (1) and let k = 1. If
A and B are singular matrices then C = A ⊕1 B is
also a singular matrix.

Proof. From equation (4), or (5), making λ = 0 we
have

det(C) = det(A11)det(B) + det(A)det(B22) (6)

and the proof follows.
Remark. Expression (6) was already known in

[4] but we have just obtained it as a particular case of
the more general expressions (4) or (5).

The following examples show that theorem 1 does
not hold when k > 1.

Example 6 Given the matrices

A =




1 5
A11 1 4

−1 3
1 2 3 9 2
2 −1 1 2 1




with A11 =


 1 −1 4

3 2 −1
2 1 −1


, and

B =




3 1 0 1
2 6 3 0
1 −2 5 −1
1 −1 1 4


 ,

we have σ(A) ≈ {10.4, 3,−2,−0.4, 1} and
σ(A11) = {−2, 1, 3}, and therefore

σ(A11) ∩ σ(A) = σ(A11) = {1,−2, 3},

but we obtain that the 2-subdirect sum

C = A⊕2 B =




1 −1 4 1 5 0 0
3 2 −1 1 4 0 0
2 1 −1 −1 3 0 0
1 2 3 12 3 0 1
2 −1 1 4 7 3 0
0 0 0 1 −2 5 −1
0 0 0 1 −1 1 4




has the eigenvalues

σ(C) ≈ {14.9, −1.4, −0.3, 4.6 ± 2.9i, 2.9, 4.7},
and therefore we have λ ∈ σ(A11) ∩ σ(A) but λ �∈
σ(A ⊕2 B) and therefore part (i) of theorem 1 does
not hold for k > 1.

Example 7 Given the matrices

A =




1 −1
A11 3 2

1 2
1 3 1 2 3

−1 2 2 1 1




and

B =




1 −1 2 −3 2
−1 1 1 1 −1

2 1
−3 1 A11

2 −1


 ,

with A11 given in example 6, we have σ(A11) ∩
σ(B22) = σ(A11), and a computation gives σ(A11)∩
σ(A⊕2 B) = ∅. Then we conclude that statement (ii)
of theorem 1 does not hold for k > 1.

Example 8 Let A be the matrix given in example 6

and let B =

[
AT

22 AT
12

AT
21 AT

11

]
. A computation shows

that σ(B22) ∩ σ(B) = σ(B22) = σ(AT
11), and

σ(A11) ∩ σ(A ⊕2 B) = ∅. Then we conclude that
statement (iii) of theorem 1 does not hold for k > 1.

We have seen that theorem 1 allows to obtain
some of the eigenvalues of the 1-subdirect sum when
certain conditions of the eigenvalues of A, B and
some submatrices are satisfied. The following result,
which relates the eigenvalues of a matrix and a sub-
matrix shall be useful to further explode theorem 1.

Theorem 9 Let A be an square matrix of order n and
let λ ∈ σ(A). Let Am be a principal submatrix of
A of order m. Let g ≥ 1 be a positive integer. If the
geometric multiplicity of λ is at least g and m > n−g
then it holds that λ ∈ σ(Am).
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Proof. See [5], p. 60.
Combining theorems 1 and 9 we can state the fol-

lowing interesting result.

Theorem 10 Let A and B be matrices of order n1

and n2, respectively, partitioned as in (1) and let
k = 1. If λ ∈ σ(A) ∪ σ(B) and the geometric multi-
plicity of λ is at least 2 (with reference to any of both
matrices) then λ is an eigenvalue of the 1-subdirect
sum C = A ⊕1 B.

Proof. From theorem 1 and theorem 9. In detail: If
λ ∈ σ(A) and its geometric multiplicity is greater or
equal to 2 then, by theorem 9 applied to principal sub-
matrix A11 of order m = n1 − k = n1 − 1 we have
that m > n1 − g since m = n1 − 1 > n1 − 2. There-
fore we conclude that λ is also an eigenvalue of A11.
From theorem 1 we conclude that λ is also an eigen-
value of the 1-subdirect sum C . If λ ∈ σ(B), from
theorem 9 we conclude that λ is also an eigenvalue of
B22 and from theorem 1 we conclude that λ is also an
eigenvalue of the 1-subdirect sum C .

Example 11 Given the matrices

A =


 2 −1 3

−2 3 3
2 1 1


 , B =


 1 2 1

−1 −3 1
1 3 3




their spectra are given by σ(A) = {−2, 4, 4} and

σ(B) ≈ {−3.0, 0.4, 3.7}

and the eigenvalue λ = 4 of A has geometric mul-
tiplicity equal to 2 with the associated eigenspace
spanned by eigenvectors [−1, 2, 0]T and [3, 0, 2]T .
Therefore, according to theorem 10, the 1-subdirect
sum

C = A ⊕1 B =




2 −1 3 0 0
−2 3 3 0 0

2 1 2 2 1
0 0 −1 −3 1
0 0 1 3 3




has λ = 4 as an eigenvalue. In fact we obtain:

σ(C) ≈ {−2.7, −2.2, 4.7, 4, 3.2}

In certain cases, imposing more conditions to the
eigenvalues and eigenvectors we can obtain more re-
sults concerning the eigenvalues and eigenvectors of
the k-subdirect sums for an arbitrary k. We do this in
the next section.

3 Eigenvectors of subdirect sums
In this section we analyze some properties of the
eigenvalues and eigenvectors of the k-subdirect sums.
We first consider the case when λ = 0 is an eigenvalue
of A or B and then we impose certain conditions to
their eigenvectors. After that we extend to the case of
general λ.

The following result shows how to obtain an
eigenvector of the k-sub-direct sum assuming certain
conditions for two blocks of matrix A.

Lemma 12 Let A and B be matrices of order n1 and
n2, respectively, partitioned as in (1), with 1 ≤ k ≤
min(n1, n2). Let x1 ∈ C(n1−k)×1 be a nonzero vector
such that x1 ∈ kerA11 and x1 ∈ kerA21. Then it

holds that vector x =

[
x1

On2×1

]
is an eigenvector of

the k-subdirect sum C = A ⊕k B corresponding to
the eigenvalue λ = 0.

Proof. We only have to show that Cx = 0. A
direct computation gives

Cx =


 A11 A12 O

A21 A22 + B11 B12

O B21 B22





 x1

Ok×1

O(n2−k)×1


 =

=


 A11x1

A21x1

O(n2−k)×1


 ,

and since x1 ∈ kerA11 and x1 ∈ kerA21 we get

Cx =

[
O(n1−k)×1

On2×1

]
= 0x.

We have an analogous result when focusing on matrix
B.

Lemma 13 Let A and B be a matrices of order n1

and n2, respectively, partitioned as in (1), with 1 ≤
k ≤ min(n1, n2). Let x2 ∈ C(n2−k)×1 be a nonzero
vector such that x2 ∈ kerB11 and x2 ∈ kerB12.

Then it holds that vector x =

[
On1×1

x2

]
is an eigen-

vector the k-subdirect sum C = A ⊕k B correspond-
ing to the eigenvalue λ = 0.

Proof. A direct computation gives Cx = 0.
Remark. Note that conditions x1 ∈ kerA11 and

x1 ∈ kerA21 imply that the first n1 − k columns of
A are a linearly dependent set and therefore the same
columns of C are also a linearly dependent set and
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then the k-subdirect sum C is a singular matrix. What
lemma 12 offers is an explicit eigenvector associated
with the eigenvalue λ = 0 of C . The same argument
can be made for conditions x2 ∈ kerB11 and x2 ∈
kerB12 in lemma 13.

As a direct consequence of lemmas 12 and 13 we
have the following.

Theorem 14 Let A and B be matrices of order n1

and n2, respectively, and let k be an integer such that
1 ≤ k ≤ min(n1, n2). Let A and B be partitioned
as in (1). Let x1 and x2 be nonzero vectors such that
x1 ∈ kerA11, x1 ∈ kerA21, x2 ∈ kerB11 and x2 ∈

kerB12. Then it holds that vector x =


 x1

Ok×1

x2


 is

an eigenvector of the k-subdirect sum C = A ⊕k B
corresponding to the eigenvalue λ = 0.

Proof. It is easy to show that Cx = O.
Now we can make a step forward leaving the con-

dition of null eigenvalue.

Lemma 15 Let A and B be matrices of order n1 and
n2, respectively, partitioned as in (1), with 1 ≤ k ≤
min(n1, n2). Let x1 ∈ C(n1−k)×1 be a nonzero vector
such that x1 is an eigenvector of A11 associated with
the eigenvalue λ and such that x1 ∈ kerA21. Then it

holds that vector x =

[
x1

On2×1

]
is an eigenvector of

the k-subdirect sum C = A ⊕k B corresponding to
the eigenvalue λ.

Proof. As in the proof of lemma 12 it is easy to
show that Cx = λx.

The counterpart, focusing on matrix B, is the fol-
lowing.

Lemma 16 Let A and B be a matrices of order
n1 and n2, respectively, partitioned as in (1), with
1 ≤ k ≤ min(n1, n2). Let x2 ∈ C(n2−k)×1 be a
nonzero vector such that x2 is an eigenvector of B22

associated with the eigenvalue λ and such that x2 ∈
kerB12. Then it holds that vector x =

[
On1×1

x2

]
is

an eigenvector of the k-subdirect sum C = A ⊕k B
corresponding to the eigenvalue λ.

Proof. A direct calculation gives Cx = λx.

It is easy to see that if

[
x1

Ok×1

]
∈ Cn1×1 is an

eigenvector of A corresponding to the eigenvalue λ
then it implies that x1 is an eigenvector of A11 asso-
ciated with λ and also that x1 ∈ kerA21. Therefore
as a consequence of lemmas 15 and 16 we have the
following.

Theorem 17 Let A and B be matrices of order n1

and n2, respectively, and let k be an integer such that
1 ≤ k ≤ min(n1, n2). Let A and B be partitioned as
in (1). Let C = A ⊕k B. Let us assume that A and B
have the same eigenvalue λ, let[

x1

Ok×1

]
∈ Cn1×1

be an eigenvector of A corresponding to the eigen-
value λ and let [

Ok×1

x2

]
∈ Cn2×1

be an eigenvector of B corresponding to the eigen-
value λ. Then it holds that

x =


 x1

Ok×1

x2




is an eigenvector of C corresponding to the eigenvalue
λ.

Proof. It is easy to show that Cx = λx.

Example 18 Given the matrices

A =




3 2
A11 5 −1

1 3
4 5 1 2 1

−2 0 2 1 4




with A11 =


 2 1 1

−8 3 9
8 1 −5


, we have that xT

1 =

[1,−1,−1] is an eigenvector of A11 associated with
the eigenvalue λ = 2, and [x1, 0, 0]T is an eigenvector
of A associated with the same eigenvalue. Given the
matrix

B =




1 2 1 1 0
−1 −3 1 0 1

1 3
2 −1 B22

−4 4


 ,

with B22 =


 3 6 −5

1 7 −4
1 6 −3


 , we have that xT

2 =

[1,−1, 1] is an eigenvector of B22 associated with the
eigenvalue λ = 2, and [0, 0, x2]T is an eigenvector
of B associated with the same eigenvalue. Therefore,
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according to theorem 17, we get that the 2-subdirect
sum C = A ⊕2 B =

=




2 1 1 3 2 0 0 0
−8 3 9 5 −1 0 0 0

8 1 −5 1 3 0 0 0
4 5 1 3 3 1 1 0

−2 0 2 0 1 1 0 1
0 0 0 1 3 3 6 −5
0 0 0 2 −1 1 7 −4
0 0 0 −4 4 1 6 −3




has the eigenvector [1,−1,−1, 0, 0, 1,−1, 1]T asso-
ciated with the eigenvalue λ = 2.

In a similar fashion as in the preceding theorems
we can state the following result.

Theorem 19 Let A and B be matrices of order n1

and n2, respectively, and let k be an integer such that
1 ≤ k ≤ min(n1, n2). Let A and B be partitioned as
in (1). Let C = A ⊕k B. Let w ∈ Ck×1 ∈ kerA12 ∩
kerB21 such that w is a common eigenvector of A22

and B11 associated with the eigenvalue λ. Then it
holds that

x =


 O(n1−k)×1

w
O(n2−k)×1




is an eigenvector of C corresponding to the eigenvalue
2λ.

Proof. It is easy to show that Cx = 2λx, and x is
nonzero since w, being an eigenvector, is nonzero

The following example shows a couple of matri-
ces that satisfy the above theorem.

Example 20 Given the matrices

A =


 4 −1 −1

3 26 −4
2 −6 24


 , B =


 32 2 5

15 45 −4
−1 −1 3




we have that wT = [1,−1] satisfies A12w = B21w =

[0, 0]T and is an eigenvector of A22 =

[
26 −4
−6 24

]

and of B11 =

[
32 2
15 45

]
associated with the eigen-

value λ = 30, and according to the theorem 19 we
obtain that [0, 1,−1, 0]T is an eigenvector of the sub-
direct sum

C = A ⊕2 B =




4 −1 −1 0
3 58 −2 5
2 9 69 −4
0 −1 −1 3




associated with the eigenvalue λ = 60.

4 Conclusions and open issues
Some new properties of the eigenvalues of the subdi-
rect sums have been presented for the particular case
of 1-subdirect sums and some results concerning the
eigenvectors of the k-subdirect sums have also been
given. Several numerical examples illustrate the re-
sults. The characterization of the eigenvalues of the
k-subdirect sum for general k is still an open prob-
lem. Some recent results on eigenvalue inclusion sets
(see [3], [6]) may help outline some properties of the
eigenvalues of the k-subdirect sum C = A ⊕k B in
terms of the spectra of matrices A and B.
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