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On eigenvalues and eigenvectors of subdirect sums
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Abstract: Some new properties of the eigenvalues of the subdirect sums are presented for the particular case of
1-subdirect sums. In particular, it is shown that if an eigenvalue A is associated with certain blocks of matrix A
or matrix B then A is also an eigenvalue associated with the 1-subdirect sum A @1 B. Some results concerning
eigenvectors of the k-subdirect sum A @y B for an arbitrary positive integer k are also given.
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1 Introduction

The concept of k-subdirect sum of matrices, intro-
duced in [4], appears naturally in several contexts re-
lated to square matrices: e.g., matrix completion prob-
lems, analysis of matrix classes, overlapping subdo-
mains in domain decomposition methods, global stift-
ness matrix in FEM, etc; see [4], [2], [1] and the ref-
erences therein.

The characterization of the invertibility of the
subdirect sum of two nonsingular matrices have been
studied recently [1]. In the particular case of a 1-
subdirect sum it is known that the 1-subdirect sum of
two singular matrices is a singular matrix [4]. We
present some new properties of the eigenvalues of
1-subdirect sums, which has relevance in some in-
stances; see [4] and the references therein for details.
We also give some results concerning eigenvectors of
the subdirect sums.

2 Subdirect sums

Let A and B be two square matrices of order nq and
ng, respectively, and let k£ be an integer such that 1 <
k < min(ny,ny). Let A and B be partitioned into
2 x 2 blocks as follows,

AH A12 Bll Bl?
A= . B= o
l Ao Ago ] l Bo1 B ] M

where Ago and Bjp are square matrices of order k.
Following [4], we call the following square matrix of
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order n = ny +no — k,

An Aqo @)
C=1| Ay Axp+ DB B ()
O Bay B

the k-subdirect sum of A and B and denote it by C' =

2.1 Eigenvalues of 1-subdirect sums

The particular case of k¥ = 1, i.e., a 1-subdirect sum,
is important in certain applications (see [4] and the
references therein). We denote as o(A) the spectrum
(i.e., the set of eigenvalues) of a matrix A. Some first
properties of the eigenvalues of 1-subdirect sums can
be summarized as follows.

Theorem 1 Let A and B be matrices of order ny and
ng, respectively, partitioned as in (1) and let k = 1.
Let C = A®1 B. Then any of the following statements

i) Aeo(A)Nao(An)
i) A € 0(A11) No(Bao)
iii) \ € 0(B) No(Ba)
implies that A € o(C).

Proof. Let us denote ass = Ao and by = By to
display that this quantities are matrices of order 1 x 1.
A direct computation shows that

det(C —\I) =
A — I Al 0]
= Aoy a4+ bip — A By
@) By Bog — A

3)
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expan g the njth-row as a sum of the rows
(Agl, a9 — A 0) and (0 b11, B12) we have

det(C' — \I) =
[ A - M Ap o)
det Agl agy — A 0 +
(0] By Bao — AT

det 0 b11 Blg s

which leads to

det(C — \) =

det(A — Xl )det(Bag — N\ )+

det(Ay; —AI)det[ b Brz ]

Boy Bag — Al

“)
and from this expression we have that each of the
statements () and (i7) implies A € o(C). To prove
(7i7) the technique is the same but now we expand
the nith-row of equation (3) as a sum of the rows
(Agl, as9, 0) and (0, bi1 — A, B12) to finally get

det(C — \I) =
det [ An = AL Ax ] det(Bgy — \)+
Aoy az?

det(A11 - )\I)det(B - )\I),
(5)
from which we conclude that statement (ii7) implies
Aeo(C). O

Example 2 Given the matrices

5
1 -1 4
An=13 2 -1 |, A= Au ;L
2 1 -1
1 0 1[5
3] 10 1
2] 6 3 0
B=11]25 1
1|-1 1 4

the spectra of A and Aq1 are

o(A) = {-2,1,1,7}, o(An) ={-2,1,3}

rke ay 27-29, 2006 (pp550-555
we obtain t tt e %JVI %t sum (Pp )

[1 =1 4]5] 0 0 0]
3 2 —1/4, 00 0
2 1 —-1/3| 00 0
C=Ae;B=|1 0 1[8] 1 0 1
0 0 o0]2] 6 3 0
0 0 0]1|-2 5 -1
|0 0 Of1|-11 4

has the eigenvalues

o(C) ~ {9.8,

and according to theorem 1, since the eigenvalues —2
and 1 are common to A and A1, they are also eigen-
values of C.

—2,1,1.7,4.9 + 2.4, 4.7}

Example 3 Given the matrix A of example 2 and ma-
trix

3 5 —9d

with Boy = -1 -3 7

-1 -1 )

BQQ are O'(B) ~ {—1.5,4.8, 2.8 + 10’&}, O'(BQQ) =
{—2,3,4}, and we obtain that the 1-subdirect sum

, the spectra of B and

1 -1 4] 51 0 0 0
3 2 —-1| 4] 0 0 O
2 1 =1} 3] 0 0 O
C=AeyB=|1 0 1] 9| 1 2 -1
0O 0 0| 2| 3 5 =5
0o o o0|-2|-1 -3 7
|00 0] 1]-1 -1 5 |
has the eigenvalues
o(C)~{9.9,-2,-1.7,3.8,1,1,3},

and according to theorem 1, since the eigenvalues —2
and 3 are common to A1y and B they are also eigen-
values of C.

It is easy to find examples such that A € o(A) N
o(B) but A\ ¢ o(A @1 B). Indeed, although o(A) =
o(B) we can not ensure that A @, B shares eigenval-
ues with A and B, as we show in the next example.

Example 4 Given the matrices

2 1] 1 3] -13 10
A=| -8 3| 9|, B=| -5|-11 10
8 1|5 —6|—14 14
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we have, notwithstanding, that the 1-subdirect sum

[ 21 1 0 0 -I
-8 3 0 0
C=A¢ B= 8 1|-8|-13 10
0 0|-5|-11 10
0 0|—-6|-14 14

has not even one eigenvalue in common with A and
B, since 0(C) ~ {—10.1,0,0.8,4.6 £+ 1.3i}.

There is a particular case in which A € o(A) N
o(B) implies A € o(A @; B). This happens when
A = 0 as we state in the following result.

Corollary 5 Let A and B be matrices of order n1 and
nyg, respectively, partitioned as in (1) and let k = 1. If
A and B are singular matrices then C = A ©1 B is
also a singular matrix.

Proof. From equation (4), or (5), making A = 0 we
have

det(C) = det(Ay1)det(B) + det(A)det(Baz) (6)

and the proof follows. O

Remark. Expression (6) was already known in
[4] but we have just obtained it as a particular case of
the more general expressions (4) or (5).

The following examples show that theorem 1 does
not hold when k£ > 1.

Example 6 Given the matrices

1 5
A 1 4
A= -1 3
1 2 3 9 2
2 -1 1 2 1
1 -1 4
with A11 = | 3 2 —1 |, and
2 1 -1 ]
3 10 1
2 63 0
B= 1 =25 =1 |’
1 —-1]1 4

Q

we have o(A) {10.4,3,—-2,-04,1} and
o(An) ={-2,1,3}, and therefore

O'(AH) N O'(A) = O'(All) = {1, —2,3},

AR OB TR e DSty S 2000 (Peo50-959)

[1 -1 4] 1 5|0 0]

3 2 —1| 1 4]0 o0

2 1 —1|-1 3|0 0
C=AaB=|1 2 3|12 3|0 1

2 -1 1| 4 713 0

0 0 0] 1 —2[5 -1

|0 0 0] 1 —1|1 4|

has the eigenvalues
o(C) ~{14.9, —1.4, —0.3, 4.6 £ 2.9, 2.9, 4.7},

and therefore we have \ € o(A11) N o(A) but X ¢
o(A @®o B) and therefore part (i) of theorem 1 does
not hold for k > 1.

Example 7 Given the matrices

1 -1
A1 3 2
A= 1 2
1 3 112 3
— 2 2 ‘ 1 1
and
-112 -3
— 1 ‘ 1 1 -1
B = 1 ,

with Ayy given in example 6, we have (A1) N
0(Ba2) = 0(A11), and a computation gives o(A11)N
0(A®2 B) = . Then we conclude that statement (i)
of theorem I does not hold for k > 1.

Example 8 Let A be the matrix given in example 6

AL AL
and let B = 22 212 1 A computation shows
Ay An

that 0(Bag) N o(B) = o(Byw) = o(AL), and
o(A11) No(A @2 B) = 0. Then we conclude that
statement (1ii) of theorem I does not hold for k > 1.

We have seen that theorem 1 allows to obtain
some of the eigenvalues of the 1-subdirect sum when
certain conditions of the eigenvalues of A, B and
some submatrices are satisfied. The following result,
which relates the eigenvalues of a matrix and a sub-
matrix shall be useful to further explode theorem 1.

Theorem 9 Let A be an square matrix of order n and
let \ € o(A). Let Ay, be a principal submatrix of
A of order m. Let g > 1 be a positive integer. If the
geometric multiplicity of ) is at least g and m > n—g
then it holds that A € o(Ay,).
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Combining theorems 1 and 9 we can state the fol-
lowing interesting result.

Theorem 10 Let A and B be matrices of order ny
and ng, respectively, partitioned as in (1) and let
k=1 1If\ € 0(A) U o(B) and the geometric multi-
plicity of A is at least 2 (with reference to any of both
matrices) then \ is an eigenvalue of the 1-subdirect

sum C = A® B.

Proof. From theorem 1 and theorem 9. In detail: If
A € 0(A) and its geometric multiplicity is greater or
equal to 2 then, by theorem 9 applied to principal sub-
matrix Ay of order m = nqy — k = ny — 1 we have
that m > ny — g since m = ny — 1 > ny — 2. There-
fore we conclude that A is also an eigenvalue of Ay;.
From theorem 1 we conclude that X is also an eigen-
value of the 1-subdirect sum C. If A\ € o(B), from
theorem 9 we conclude that ) is also an eigenvalue of
Bys and from theorem 1 we conclude that X is also an
eigenvalue of the 1-subdirect sum C'. O

Example 11 Given the matrices

2 —1|3 1] 2 1
A=| -2 33|, B=|-1]-3 1
2 1|1 1| 33

their spectra are given by o(A) = {—2,4,4} and
o(B) ~ {~3.0, 0.4, 3.7}

and the eigenvalue N = 4 of A has geometric mul-
tiplicity equal to 2 with the associated eigenspace
spanned by eigenvectors [—1,2,0]T and [3,0,2]T.
Therefore, according to theorem 10, the 1-subdirect
sum

2 =1 3] 0 0

-2 3| 3| 00

C=A¢ B= 2 1| 2 21
0O 0|-1]-3 1

0O 0 1} 3 3

has A = 4 as an eigenvalue. In fact we obtain:
o(C) ~{-2.7, —2.2,4.7, 4, 3.2}

In certain cases, imposing more conditions to the
eigenvalues and eigenvectors we can obtain more re-
sults concerning the eigenvalues and eigenvectors of
the k-subdirect sums for an arbitrary k. We do this in
the next section.

In this section we analyze some properties of the
eigenvalues and eigenvectors of the k-subdirect sums.
We first consider the case when A = 0 is an eigenvalue
of A or B and then we impose certain conditions to
their eigenvectors. After that we extend to the case of
general .

The following result shows how to obtain an
eigenvector of the k-sub-direct sum assuming certain
conditions for two blocks of matrix A.

Lemma 12 Let A and B be matrices of order ny and
ng, respectively, partitioned as in (1), with 1 < k <
min(ni,ne). Letz1 € C=k)X1 e q nonzero vector
such that x1 € kerAq1 and v, € kerAsy. Then it
€
Ong x1
the k-subdirect sum C = A & B corresponding to
the eigenvalue \ = 0.

holds that vector x = is an eigenvector of

Proof. We only have to show that Cz = 0. A
direct computation gives

A11 A12 0] 1 [ Tl
Cx=| Ay Axp+Bi1 B2 Orx1 =
{ O By Bao | { O(na—k)x1 J

Allxl
- A21x1 )
{ O(ny—k)x1 |

and since x1 € ker Ay and x1 € ker A we get

Cx = Ok | _ O0z. O
na X1

We have an analogous result when focusing on matrix

B.

Lemma 13 Let A and B be a matrices of order ny
and ne, respectively, partitioned as in (1), with 1 <
k < min(ni,ny). Let z9 € C2=k)x1 be 4 nonzero
vector such that o € kerByy and xo € kerBjs.
On1><1
T2

Then it holds that vector © = is an eigen-

vector the k-subdirect sum C = A @ B correspond-
ing to the eigenvalue \ = (.

Proof. A direct computation gives Cx = 0. 0

Remark. Note that conditions 1 € kerA;; and
x1 € kerAs; imply that the first ny — k columns of
A are a linearly dependent set and therefore the same
columns of C' are also a linearly dependent set and
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then t 18 a singular matrix.

lemma 12 offers is an explicit eigenvector associated
with the eigenvalue A = 0 of C'. The same argument
can be made for conditions xo € kerBi; and xo €
kerBis in lemma 13.

As a direct consequence of lemmas 12 and 13 we
have the following.

Theorem 14 Let A and B be matrices of order ny
and no, respectively, and let k be an integer such that
1 < k < min(ny,ng). Let A and B be partitioned
as in (1). Let x1 and xo be nonzero vectors such that
x1 € kerAiq, 1 € kerAsy, xo € kerBiy and x9 €
Iy
kerBis. Then it holds that vector t = | Opyx1 | is
Z2
an eigenvector of the k-subdirect sum C = A @ B
corresponding to the eigenvalue \ = 0.

Proof. 1t is easy to show that Cz = O. 0O
Now we can make a step forward leaving the con-
dition of null eigenvalue.

Lemma 15 Let A and B be matrices of order ny and
ng, respectively, partitioned as in (1), with 1 < k <
min(ni,ne). Letz1 € C1=k)X1 be q nonzero vector
such that xq is an eigenvector of Aq1 associated with
the eigenvalue \ and such that x1 € kerAsy. Then it
1
Onz x1
the k-subdirect sum C = A @ B corresponding to
the eigenvalue \.

holds that vector x = is an eigenvector of

Proof. As in the proof of lemma 12 it is easy to
show that Cx = Az. O

The counterpart, focusing on matrix B, is the fol-
lowing.

Lemma 16 Let A and B be a matrices of order
ny and no, respectively, partitioned as in (1), with
1 < k < min(ny,ng). Let x9 € Cm2=k)x1 po g
nonzero vector such that xo is an eigenvector of Bao
associated with the eigenvalue \ and such that x4 €

Onyx1 | .
ny X is

x2

kerBig. Then it holds that vector x =

an eigenvector of the k-subdirect sum C = A @ B
corresponding to the eigenvalue \.

Proof. A direct calculation gives Cx = Axz. 0O

I
Ok><1
eigenvector of A corresponding to the eigenvalue A
then it implies that x; is an eigenvector of Aj; asso-
ciated with X and also that 21 € kerAs;. Therefore
as a consequence of lemmas 15 and 16 we have the
following.

It is easy to see that if € C*lis an

ings of the. 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 550-555
l116:9/2—su%((f1rect sum What PP d'1"\i!1e01‘em ﬁ ftj am[ gv be y,are ® )

et matrices of order nq
and no, respectively, and let k be an integer such that
1 < k < min(ny,ng). Let A and B be partitioned as
in(1). Let C = A @y, B. Let us assume that A and B
have the same eigenvalue ), let

1 nyx1
e C™
[OkXI]

be an eigenvector of A corresponding to the eigen-
value \ and let

be an eigenvector of B corresponding to the eigen-
value \. Then it holds that

T
= | Ogx1
1)

is an eigenvector of C corresponding to the eigenvalue
A

Proof. It is easy to show that Cx = A\z. O

Example 18 Given the matrices

3 2
A 5 —1
A= 1 3
4 5 112 1
—2 0 2|1 4
2 1 1
with A1 = -8 3 9 |, we have that xlT =

8 1 =5
[1,—1,—1] is an eigenvector of A11 associated with
the eigenvalue \ = 2, and [x1,0,0]7 is an eigenvector
of A associated with the same eigenvalue. Given the
matrix

1 211 1 0
-1 —-3]1 0 1
B = 1 3 ,
2 —1 Boo
—4 4
3 6 -5
with Boy = 1 7 —4 |, we have that :):g =
1 6 -3

[1,—1, 1] is an eigenvector of Bag associated with the
eigenvalue \ = 2, and [0,0,x2]7 is an eigenvector
of B associated with the same eigenvalue. Therefore,
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according to theorem

sumC =ADy B =

, we get that the 2-subdirect

21 1| 3 2[00 0]
83 9| 5 1|0 0 0
8 1 -5/ 1 3|00 0
|45 1 3 3[11 0
“l—=20 2/ 0 110 1
00 0] 1 3[36 —5
00 0 2 —1|1 7 —4
00 0|—4 4|1 6 -3 |

has the eigenvector [1,—1,—1,0,0,1,—1,1]" asso-
ciated with the eigenvalue \ = 2.

In a similar fashion as in the preceding theorems
we can state the following result.

Theorem 19 Let A and B be matrices of order ny
and no, respectively, and let k be an integer such that
1 < k < min(ny,ng). Let A and B be partitioned as
in(1). Let C = A @y, B. Let w € CF¥l € kerAipN
ker Boy such that w is a common eigenvector of Aso
and By associated with the eigenvalue ). Then it
holds that

Otni—k)x1

xTr = w

O(ny—k)x1

is an eigenvector of C' corresponding to the eigenvalue

2

Proof. 1t is easy to show that Cxz = 2\x, and x is
nonzero since w, being an eigenvector, is nonzero U

The following example shows a couple of matri-
ces that satisfy the above theorem.

Example 20 Given the matrices

we have that w! = [1, —1] satisfies Ajow = Boyw =
26 —4 ]

[0,0]7 and is an eigenvector of Asy = [ -6 24

32

15 45
value N = 30, and according to the theorem 19 we
obtain that [0,1, —1,0]" is an eigenvector of the sub-
direct sum

and of B11 = associated with the eigen-
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[4 -1 -1 0]
3158 —2| 5
C=Ao:B=1|,| 9 6| _4
0l—1 —1] 3

associated with the eigenvalue \ = 60.

4 Conclusions and open issues

Some new properties of the eigenvalues of the subdi-
rect sums have been presented for the particular case
of 1-subdirect sums and some results concerning the
eigenvectors of the k-subdirect sums have also been
given. Several numerical examples illustrate the re-
sults. The characterization of the eigenvalues of the
k-subdirect sum for general k is still an open prob-
lem. Some recent results on eigenvalue inclusion sets
(see [3], [6]) may help outline some properties of the
eigenvalues of the k-subdirect sum C' = A @i B in
terms of the spectra of matrices A and B.
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