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Abstract: - In the present study, we have defined, so-called, MaxEnt and MinxEnt functionals on the 
set of corresponding moment vector functions via the MaxEnt and MinxEnt optimization  measures. 
By virtue of these functionals we have obtained two new distributions – MinMaxEnt and MaxMinxEnt 
distributions. The approach to obtain mentioned distributions can be formulated as a generalization of 
MaxEnt and MinxEnt optimization principles. Moreover, we have proposed a proof of existence and 
uniqueness of solution of functional equation with respect to Langrange multipliers and a rule to 
choose an initial point for Newton’s  approximations. 
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1 Introduction 
 Several optimization principles are formulated 
and methods realizing these principles are 
suggested in [2]. Optimizations principles can 
be applied to different statistical problems [2; 
7; 5; 8]. 
 
Two of the optimization principles are as 
follows: 
 
Principle 1: Out all probability distributions 
satisfying given constraints, choose the 
distribution that is closest to the uniform 
distribution. 
 
Principle 2: Out all probability distributions 
satisfying the given constraints, choose the 
distribution that is closest to the given a priori 
distribution. 
 

In [6] a generalization of MaxEnt Principle 
is proposed. In this study, we have defined, so-
called, MaxEnt and MinxEnt continuous 
functionals on the compact set of 
corresponding moment vector functions via the 
MaxEnt and MinxEnt optimization measures. 

The moment vector function giving the 
least value to MaxEnt functional and the 
moment vector function giving the greatest 
value to MinxEnt functional generate two 
distributions. We call this distributions 

correspondingly MinMaxEnt and MaxMinxEnt 
distributions. 

The approach to obtain MinMaxEnt and 
MaxMinxEnt distributions can be formulated 
as a generalization of MaxEnt and MinxEnt 
optimization principles. 

The mentioned generalization of entropy 
optimization principles allows to select the 
distributions which are as well as possible 
closer to observed distribution in the sense of 
corresponding measures. 

Moreover, we have considered some 
questions concerned with the application of 
Newton’s method to obtain MinMaxEnt and 
MaxMinxEnt distributions. Problems of this 
kind are the establishment of existence and 
uniqueness of solution of functional equation 
araised in the present situation and the 
selection of the initial point for 
approximations.  
 
2 Definition of MaxEnt Functional 
The problem of  maximizing MaxEnt measure 
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where ( )mii ,,1,0 Κ=λ  are Langrange 

multipliers. Consequently, 
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If the distribution 
( ))0()0(

1
)0( ,, nppp Κ=  is given, then one can 

obtain moment vector value ( )mµµµ ,,,1 1 Κ=  
for the each moment vector function 
( ) ( ) ( )( )xgxgxg m,,,1 1 Κ=  and Hmax can be 

considered as a functional depends on moment 
vector function g(x). We call this functional 
MaxEnt functional. Consequently, we will use 
the notation U(p) and U(g) interchangeably to 
denote the maximum value of H corresponding 
to  

( )nppp ,,1 Κ=   
or  
( ) ( ) ( )( )xgxgxg m,,,1 1 Κ= . 

It’s proved as follows: 
 

Theorem 1: If  U(g) is the above defined 
MaxEnt functional derived by maximizing 
(2.1) subject to constraints (2.2), then U(g) is 
continuous on the set of continuous moment 
vector functions from C[a,b] and reaches its least 
and greatest values in the given compact set K, 

[ ]baCK ,⊂   
 
Remark: MaxEnt and MinxEnt functionals for 
continuous- variate distributions are defined 
simularly. Mentioned functionals also are 

continuous on the compact set of moment 
vector functions. 
 
3 Discrete MinMaxEnt 
Distribution 
Let U(g) be a functional defined in Section 2  
which is derived by maximizing (2.1) subject 
to constraints (2.2) and K be the compact set of 
moment vector functions g(x). Then according 
to the Theorem 1, U(g) reaches its least and 
greatest values in this compact set. 
  Suppose that 

( ))1()(min gUgU
Kg

=
∈

; ( ))2()(max gUgU
Kg

=
∈

. 

 Consequently,  
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We call the distribution 
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nppp Κ  corresponding to the 

moment vector function )()1( xg  as discrete 
MinMaxEnt distribution. 

 
Theorem 2: If  ( ))0()0(

1
)0( ,, nppp Κ=  is 

given distribution, ⎟
⎠
⎞⎜

⎝
⎛= )1(,,)1(

1
)1(

nppp Κ  is 

the MinMaxEnt distribution and 
( ))2()2(

1
)2( ,, nppp Κ=  is the distribution 

corresponding to moment vector function 
)2(g (x) in (3.1), then inequalities 

 
( ) ( ) ( ))2()1()0( pUpUpH ≤≤  , 

or  
( ) ( ) ( ))2()1()0( gUgUpH ≤≤ ,                      (3.2) 

 
where H is entropy function, U is MaxEnt 
functional defined beforehand, are satisfied. 
 Otherwise  out all probability 
distributions corresponding to moment vector 
functions g(x) from compact set K, the 
MinMaxEnt distribution is the closest to the 
given distribution ( ))0()0(

1
)0( ,, nppp Κ= . 
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4 Continuous–Variate 
MinMaxEnt Distribution 
Let f0(x) be given probability density function 
(p.d.f.). The problem of maximizing 
continuous-variate MaxEnt measure 
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If the p.d.f. f0(x) is given, then one can 
obtain moment vector value ( )mµµµ ,,,1 1 Κ=  
for each moment vector function 
( ) ( ) ( )( )xgxgxg m,,,1 1 Κ=  and Hmax can be 

considered as a functional dependent on 
moment vector functions g(x). We call this 
functional continuous-variate MaxEnt 
functional and use the notation U(f) and U(g) 
interchangeably to denote the maximum value 
of H corresponding to p.d.f. f(x) or moment 
vector function g(x). Functional U(g) is 
continuous on compact set K of moment vector 
functions g(x). 
 Suppose that, 

;)(min )1( ⎟
⎠

⎞
⎜
⎝
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gUgU
Kg

( ))1()(max gUgU
Kg

=
∈

, 

then  
( ) ( ))2()1( gUgU ≤ .                                    (4.4) 

We call the distribution f1(x) 
corresponding to moment vector function 
g(1)(x), MinMaxEnt continuous variate 
distribution. 
 
Theorem 3:  Let f0(x) be given p.d.f., f(1)(x) be 
the continuous variate MinMaxEnt distribution 
and f(2)(x) be the distribution corresponding to 
moment vector function g(2)(x) in (4.4), then 
the inequalities, 
( ) ( )( ) ( )( )21)0( fUfUfH ≤≤ ,  

or 
( ) ( )( ) ( )( )21)0( gUgUfH ≤≤ ,                (4.5) 

where H is entropy function, U is MaxEnt 
functional defined beforehand, are satisfied. 
 Otherwise, out all probability 
distributions corresponding to moment vector 
functions g(x) from compact set K the 
continuous-variate MinMaxEnt distribution is 
the closest to the given p.d.f. f0(x). 
 
5 Discrete MaxMinxEnt 
Distribution 
Let ( ))0()0(

1
)0( ,, nppp Κ=  be given 

probability distribution. The problem of 
minimizing discrete MinxEnt probability 
measure 
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subject to constraints (2.2) has solution 
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where mλλ ,,1 Κ  are Langrange multipliers. 
 Suppose that the probability 
distribution ( ))0()0(

1
)0( ,, nppp Κ=  is given, 

then one can obtain moment vector value 
( )mµµµ ,,,1 1 Κ=  for each moment vector 

function ( ) ( ) ( )( )xgxgxg m,,,1 1 Κ=  and D can 
be considered as a functional dependent on 
moment vector functions g(x).  
 We call this functional MinxEnt 
functional and use the notation V(f) and V(g) 
interchangeably to denote the minimum value 
of D corresponding to probability distribution 
p or moment vector function g(x). Functional 
V(g) is continuous on compact set K of 
moment vector functions g(x).  
 Let 
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We call the distribution 

⎟
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nppp Κ  corresponding to 

moment vector function g(1)(x) discrete 
MaxMinxEnt distribution. 
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Theorem 4:  Assume that, 
( ))0()0(

1
)0( ,, nppp Κ=  is given probability 

distribution, ⎟
⎠
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1
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nppp Κ  is the 

discrete MaxMinxEnt distribution and 
( ))2()2(

1
)2( ,, nppp Κ=  is the distribution 

corresponding to moment vector function 
)2(g (x) in (5.3). Then inequalities, 

( ) ( )( ) ( )( )21)0( : pVpVqpD ≥≥  
or 
( ) ( )( ) ( )( )21)0( : gVgVqpD ≥≥                    (5.4) 

where D is Kullback-Leibler measure, V is 
MinxEnt functional defined beforehand, hold.  
 Otherwise, out all probability 
distributions corresponding to moment vector 
functions g(x) from compact set K the discrete 
MaxMinxEnt distribution is the closest to the 
given probability distribution 

( ))0()0(
1

)0( ,, nppp Κ= . 
 
6 Continuous-Variate 
MaxMinxEnt Distribution, 

Let f0(x) be given p.d.f., ( ) 10 =∫
b

a
dxxf . The 

problem of minimizing continuous-variate 
MinxEnt measure 
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 If the p.d.f. f0(x) is given, then one can 
obtain moment vector value ( )mµµµ ,,,1 1 Κ=  
for each moment vector function 
( ) ( ) ( )( )xgxgxg m,,,1 1 Κ=  and Dmin can be 

considered as a functional dependent on 
moment vector functions g(x). We call this 
functional continuous variate MinxEnt 
functional and use the notation V(f) and V(g) 
interchangeably to denote the minimum value 
of D corresponding to p.d.f. f(x) or moment 
vector function g(x). Functional V(g) is 
continuous on compact set [ ]baCK ,⊂  of 
moment vector-functions g(x).  
Let ( ))1()(max gVgV

Kg
=

∈
 ( ))2()(min gVgV

Kg
=

∈
, 

then 
( ) ( ))2()1( gVgV ≥ .                                      (6.4) 

We call the distribution f1(x) corresponding to 
moment vector function g(1)(x) continuous 
MaxMinxEnt distribution. 
 
Theorem 5: Let f0(x) be given p.d.f., f(1)(x) be 
the continuous variate MaxMinxEnt 
distribution and f(2)(x) be the distribution 
corresponding to moment vector function 
g(2)(x) in (6.4). Then the inequalities 
( ) ( )( ) ( )( )21)0( : fVfVqfD ≥≥  

or 
( ) ( )( ) ( )( )21)0( : gVgVqfD ≥≥ ,       

where D is Kullback-Leibler measure, V is 
MinxEnt functional defined beforehand, are 
satisfied.   

Otherwise, out all probability 
distributions corresponding to moment vector 
functions g(x) from compact set K, [ ]baCK ,∈  
the continuous variate MaxMinxEnt 
distribution is the closest to the given 
probability distribution f0(x). 
 
7 On choosing an initial point for 
Newton’s approximations 
The problem obtaining MinMaxEnt and 
MaxMinxEnt probability distributions is 
concerned with evaluation of Langrange 
multipliers encountered in formulas of MaxEnt 
and MinxEnt probability distributions. 
 Mentioned problem can be solved, for 
example, by using Newton’s method. 
Therefore it is important to consider main 
questions of Newton’s method. These 
questions are: 
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• The existence and uniqueness of 

solution of functional equation arised 
in determination of MinMaxEnt and 
MaxMinxEnt distributions  

 
• The selection of the initial point for 

Newton’s approximations.  
 

Note that, the established result is useful 
not only in evaluation of Lagrange multipliers 
but also in the other applications of Newton’s 
method and is an alternative to [7]. 
 We shall consider mentioned questions 
for discrete MinMaxEnt distribution. Note that 
the developed outline is also suitable for the 
other distributions. 
 Langrange multipliers mλλ ,,1 Κ  are 
determined as solution of system of equations: 
 

( )
( )

( )

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

=

==∑
=

∑
=

−

ηλ

λ

f

xg
n

i

m

j
ixjgj

e 10,1
1

0

    

       (7.1) 
where ( ) ,,,, 21

′= mffff Κ  

( )′= mηηηη ,,, 21 Κ ,  ( )′= mλλλλ ,,, 21 Κ , 

( )
( )

.,,2,1,)( 0

1
mjexgf

m

j
xjgjn

i
ijj Κ==

∑
=

−

=
∑

λ

λ  

Remind that (7.1) is received by inserting (2.2) 
into (2.3). From first equation (7.1) follows: 
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Consequently, in order to obtain mλλ ,,1 Κ  it 
is sufficient to solve equation 
 
( ) .ηλ =f                    (7.3) 

Let 

{ } ( ),,:
1
∑
=

=≤∈=
n

i
ijjjj

m xgaayEyB     

then BEf m →: . ( )λf ′  is variance-
covariance matrix. Therefore if random 

variables ( ) ( )xgxg m,,1 Κ  are linearly 
independent, then ( )λf ′  is positive defined 
matrix and its all eigenvalues are positive [4; 
1]. Let 0χ  be the least eigenvalue of ( )λf ′ , 
then the inequality 

( )[ ]
0

1 1
χ

λ ≤′ −f                                         (7.4) 

holds. 
We have proved that ( )λf ′′  is 

bounded in norm for all mE∈λ . So in order 
to apply Newton’s method to equation (7.3), 
the number )0(ηη −  must be sufficiently 

small, where ( ))0()0( λη f= . If the mentioned 
condition is fulfilled, then )0(λ  can be taken as 
initial point for Newton’s apprximations. 
 Now assume that this condition is not 
fulfilled. Since ( )λf ′  is non-singular 
according to theorem on locally reversion [3; 
9], one-to-one mapping exists between small 
neighbourhoods of )0(λ  and )0(η . In other 

words ( )λf  is locally one-to-one. Let )1(η  be 

a point of segment  [ ]ηη ,)0( , 
[ ] ( ) ( )( )10;,,)( )0()0()0( ≤≤+−=∈ tttxtx ηηηηη , 

which belongs to small neighbourhood of 

( ) 0,: )0(
)0(

)0()1()0( >+
−

−= εη
ηη

εηηηη . 

Then )0(λ  is acceptable as initial point of 
Newton’s approximations and by using 
Newton’s method it is possible to find that  

( ).)1(1)1( ηλ −= f                                          (7.5) 
Proceeding the fixed process along segment 
[ ]ηη ,)0(  it is available to find point ,)(nη  

[ ]ηηη ,)0()( ∈n  such that εηη <− )(n  and 

( ) ( )( )nn f ηλ 1−= . Therefore, ( )nλ  is 
acceptable as initial point of Newton’s 
approximations for solution of equation (7.3). 
 The fact that the number n of intervals 
[ ]ii ηη ,1+  is finite can be established by Borel’s 
Lemma.  
Remark 1: The existence of solution of 
equation (7.3) can be proved only by applying 
the theorem on locally reversion. But the 
application of Newton’s method allows to 
obtain approximately ( ) ( ) ( )nλλλ ,,, 21 Κ   which 

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp617-622)



 6

among [ ]ηη ,)0(  lead to η . Since each convex 
function could have a unique maximum, the 
uniqueness of solution of equation (7.3) 
follows from the convexity of Entropy function 
H. So f is one-to-one on all of mE . 
Remark 2: Practically, it is convenietly to 
choose the initial point for Newton’s 
approximations as ( )0,,0)0( Κ=λ , then 

nln0 =λ .     
 
8 Conclusion 
The proved Theorems 2-5 for discrete 
distributions and continuous-variate 
distributions in the forms of MinMaxEnt and 
MaxMinxEnt distributions obtain the closest 
distributions to given in dependence on 
considering moment vector functions and 
optimization measures. 

In the case of discrete distributions the 
application of known optimization principles 
require to satisfy inequality m+1<n. But the 
Theorem 2 and 4 shows that it is possible to 
use moment functions of number m, when 
m+1>n. This situation can be described in the 
following form. 
 Let the number m of given moment 
functions such that m+1>n. Then classical 
optimization principles immediately aren’t 
applicable. But out all moment vector 
functions of the form ( )( )xg1,1  according 
Theorems 2,4 it is possible to choose the 
moment vector function generating the 
distribution closest to the given probability 
distribution in the sense of corresponding 
optimization measure. Let mentioned moment 
vector function be ( )( )xg )0(

1,1 . Furthermore, 

by testing all combinations of pair ( )( )xg )0(
1,1  

and the other given moment vector functions 
out all moment vector functions 

( ) ( )( )xgxg )0(
2

)0(
1 ,,1  according to Theorems 2-

4 one can choose moment vector function 
( ) ( )( )xgxg )0(

2
)0(

1 ,,1  generating the 
distribution which is the closest to the given 
distribution. Proceeding this process, it is 
possible to choose moment vector function 

( ) ( )( )xgxg k
)0()0(

1 ,,,1 Κ , where k+1<n that 
generates the distribution among all 
distributions generated by k+1 dimensional 
moment vector functions.  

The process described in Section 7 
enables to obtain an initial point   ( )nλ  for 
Newton’s approximations for solution of 
equation  ( ) ηλ =f  by starting from arbitrary 
point )0(λ , mE∈)0(λ  and succesfully applying 
Newton’s method to equations 
( ) nif ii ,,1,0,)()( Κ==ηλ .  

 The established result concerned with 
Newton’s method is useful not only for 
evaluation of Langrange multipliers but also in 
the other applications and is an alternative to 
[7]. 
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