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Abstract: - This paper presents a new version of the High Dimensional Model Representation (HDMR) which
attempts to approximate a given multivariate function by an expansion starting from a constant term and con-
tinuing by adding univariate components and then the terms whose multivariances increase via bivariance,
trivariance and so on. HDMR works well as long as the function under consideration behaves, more or less, ad-
ditive. Factorized High Dimensional Model Representation (FHDMR) was considered as a powerful approach
working well when the multivariate function under consideration is mostly multiplicative. The additivity of
the function was defined through its HDMR components by introducing additivitiy measurers. FHDMR, un-
fortunately, disabled us to define efficient multiplicativity measurers. Hence, we develope Logarithmic High
Dimensional Model Representation (LHDMR) to this end. It removes several unpleasent incapabilities of
FHDMR.
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1 Introduction
The direct evaluation of multivariate functions whose
explicit structures are given through an evaluation
rule or via some data generally becomes a nightmare
when the dimensionality increases to high values be-
cause of the limitations in memory and computation
speed of today’s computers. Despite the dazzling
development in the computer technology these lim-
itations seem always to be existing for certain de-
gree of dimensonality. Same thing is also correct and
even worse for the indirect evaluation of the multi-
variate functions via differential or some other kind
of equations. This reality urged mathematicians to
develop certain divide–and–conquer type methods
since all conventional tools like series expansions or
discretizations becomes devastating when the dimen-
sionality exceeds a certain criticial value. The first
attempt to this end came from Sobol[1] although his
work finds its roots in some studies of Kolmogorov.
Sobol was offering a formula whose terms’ multi-
variances gradually increase as we proceed to higher
terms of the expansion. A little bit later Rabitz group
[2-5] intensely focused on the topic and extended the
issue by introducing a product type weight function
to the definition of the expansion coefficients. The
weight function was considered not mandatorily con-
tinuous but also discrete involving distribution–like
functions (for example, Dirac’s delta function). The
weight function ought to be product type to avoid
certain inconsistencies in the determination of the
expansion coefficients. The geometry of the region

where the expansion is developed was considered to
be an orthogonal structure like an hyperprism or a
multidimensional ball. The expansion was called
“High Dimensional Model Representation”. It was
used in several applications in applied sciences.

Although HDMR was a finite representation the
number of its components was becoming quite high
(2N if the number of independent variables, dimen-
sionality, is N) when the dimensionality is sufficient-
ly high. Even the value 10 which can be considered
a moderate value for dimensionality was enforcing
us to use 1024 terms in HDMR. Hence, the truncat-
ing HDMR at low multivariances like univariate or
bivariate terms was standing as a good approximat-
ing facility. Although HDMR is finite, people does
not generally intend to use HDMR’s itself as a whole
but its truncation, and wants to suffice to use only
constant and univariate components and perhaps in
certain cases at most bivariate terms. Today we use
the “HDMR approximation” statement to this end.

Soon or later, it was noticed that the HDMR was
working well when the function under consideration
is mostly additive and it was turning out to be insuf-
ficient when the multiplicativity level of the multi-
variate function under consideration increases, and,
at the purely multiplicative limit, it was presenting
worst quality of approximation if one truncates it at
low level multivariances like univariance or bivari-
ance. This urged the scientists to develop a new ver-
sion of HDMR to work well for the dominantly mul-
tiplicative functions. Demiralp’s group developed
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the “Factorized High Dimensional Model Represen-
tation and published works for its certain applica-
tions [6-10].

Demiralp’s group studied some other possibili-
ties to extend HDMR to more general cases to in-
crease its power and efficiency. Amongst these we
can mention about the Hybrid High Dimensional
Model Representation (HHDMR) which combines
HDMR and FHDMR via a flexible combination pa-
rameter (hybridity). This type of HDMR works well
up to some level of quality for both additive and mul-
tiplicative functions. This still requires orthogonal
geometry and product type weight functions (prod-
uct of univariate functions each of which depends on
a different independent variable). To remove this re-
quirement, Demiralp’s group introduced a new ver-
sion of HDMR where the weight function was more
general (no requirement for product type). It was us-
ing an auxiliary product type weight function and the
HDMR of the method’s weight function. Method
was called “Generalized High Dimensional Model
Representation (GHDMR)”. Although it was re-
moving basic limitations leading to inconsis-
tencies in HDMR, it was necessitating the solution
of the multivariate integral equations to determine
the expansion terms. This was obviously making
the method expensive. However, in the case where
the weight function is the linear combination of the
Dirac’s delta functions located at different positions
in the space of the independent variables, the inte-
gral equations were turning out to be linear algebraic
equations. Method was applied to certain interesting
problems with success. One other HDMR variety
developed by Demiralp’s team was “Interval High
Dimensional Model Representation (IHDMR)”. Its
basic aim was to reflect the uncertainties in the data
given for a multivariate function to HDMR, FHDMR,
or GHDMR. Not a unique structure for the function
under consideration but a couple of upper and lower
bounds were sought there.

Since the additivity and multiplicativity proper-
ties were approximation quality determining agents
certain entities to measure the additivity were defined
and called “Additivity Measurers” in general. These
were the elements of a set of scalars and composed
of the terms called “Constancy Measurer”, “First Or-
der Addivity Measurer”, “Second Order Additivity
Measurer” and so on.

HDMR is an additive representation versus to the
product type representation of FHDMR whose fac-
tors are produced from HDMR components. One
was expecting that the truncations of the finite term
product of FHDMR would give better quality of ap-
proximation when the multivariate function under
consideration has an overdominating multiplicativity

against its additivity. All observations were confirm-
ing this idea. We tried to define “Multiplicativity
Measurers” for this case and soon noticed that the
defined entities were not good agents to get insight
about the multiplicativity since there was no war-
ranty about the monotonicity of them as we proceed
to higher multivariance measurers. This unpleasent
situation remained as a “Butterfly in Stomach” issue
until now. At this moment we know that the problem
was in the structuring of FHDMR and we slightly
modified FHDMR in a conceptually important way.
This paper contains the presentation of this modifica-
tion and the definition of the “Multiplicativity Mea-
surers”.

This section has been an oral introduction to the
presentation of the subject. Hence, the formulae to
make the presentation more readable mathematically
will be given in the coming sections.

Paper is organized as follows. The second sec-
tion presents the recalling of HDMR and Additivity
Measurers while the third section is about FHDMR
recalling. Fourth section presents the new method,
“Logarithmic High Dimensional Model Representa-
tion (LHDMR)” and the definition of “Multiplica-
tivity Measurers”. The fifth section contains simple
illustrative applications of LHDMR and concluding
remarks.

2 HDMR and Additivity Measurers
The high dimensional model representation of a mul-
tivariate function f (x1, ..., xN) where N is the dimen-
sion of the Euclidean space spanned by the indepen-
dent variables is given as

f (x1, ..., xN) = f0 +

N
∑

i1=1

fi1
(

xi1
)

+

N
∑

i1 ,i2=1
i1<i2

fi1,i2
(

xi1 , xi2
)

+ · · · (1)

where the right hand side components are mutually
orthogonal in an Hilbert space over the hyperprism
defined by the edges ai ≤ xi ≤ bi, (1 ≤ i ≤ N)
where ai and bi are assumed to be given. The inner
product in this space is defined as follows for two
arbitrary square integrable multivariate functions,
g (x1, ..., xN) and h (x1, ..., xN) in this space

(g, h) ≡
∫ b1

a1

dx1...

∫ bn

aN

dx1W (x1, ..., xN)

×g (x1, ..., xN) h (x1, ..., xN) (2)
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where the weight function W (x1, ..., xN) is a product
type function, that is,

W (x1, ..., xN) ≡
N
∏

i=1

Wi(xi) (3)

and we assume that Wi(xi) is given and its in-
tegral between ai and bi is equal to 1 (normaliza-
tion). These factors can be chosen continuos or dis-
continuous as we mentioned before. Even their ba-
sic weight function property, preserving sign, can be
relaxed formally. However this may lead to certain
anomalies and incompletenesses in vector space re-
lated issues. Hence we do not intend to remove sign
conserving rule.

The orthogonality amongst the HDMR compo-
nents given in the right hand side of (1) suffices to de-
termine those components uniquely. The multivari-
ances of those components are self–explained, that
is, the number of their arguments defines the multi-
variance. In this sense, f0 is a constant and fi1

(

xi1
)

s
stand for univariate functions each of which depends
on a unique and different independent variable. To
simplify the explanation of the determination of
HDMR components we can define the following in-
tegral operator via an arbitrary function g (x1, ..., xN)

P0g (x1, ..., xN) ≡
∫ b1

a1

dx1...

∫ bN

aN

dxNW (x1, ..., xN)

×g (x1, ..., xN) (4)

The orthogonality of all higher than zero order multi-
variant components to f0 dictates us that the integrals
of those components over one of independent vari-
ables over the related interval under the correspond-
ing univariate weight function given above vanish
(vanishing property). Now the action of P0 on both
sides of (1) and then the utilization of the vanishing
properties of the higher than zero variate terms, and
the normalized nature of the weight function factors
lead us to write

f0 = P0 f (x1, ..., xN) (5)

We need to define another integral operator Pi
such that it is equivalent to P0’s form obtained af-
ter discarding the integration over xi and the univari-
ate weight function factor Wi (xi). Its action on a
multivariate function produces a univariate function
depending on xi in contrast to constant producing
nature of P0. The action of this operator on both
sides of (1) and the use of vanishing properties of all
HDMR terms except the constant one and the
normalization in univariate weight function factors

enable us to write

fi (xi) = Pi f (x1, ..., xN) − f0, 1 ≤ i ≤ N (6)

As can be noticed immediately, the entities, P0, P1,
...,PN , are in fact certain kind of projection operators
and we use them in the determination of the constant
and univariate components of HDMR. The bivariate
and the higher multivariate HDMR components can
be determined in similar ways although we do not in-
tend to give them explicitly here. However, we can
state that we need to define further projection oper-
ators for brevity in the resulting formulae. To this
end, in general, we need to use the operator Pi1,...,ik
(1 ≤ k ≤ N) which is obtained from P0 by discard-
ing the integration over the variables xi1 ,...,xik and the
univariate weight factors Wi1

(

xi1
)

,...,Wik
(

xik
)

from
the definition of P0.

Now we are sufficiently equipped to deal with
the addivity measurers. Towards this goal we need
to define a norm in the Hilbert space used for the
formulation of HDMR. We can use the norm induced
by the inner product given above. We can write the
following identicality

‖g‖ ≡ (g, g)
1
2 (7)

where g denotes, g (x1, ..., xN), any multivariate
function in the Hilbert space under consideration.

By taking norm squares of the both sides of (1)
and considering the orthogonalities of the HDMR
components we arrive at the following identicality

‖ f ‖2 ≡ ‖ f0‖
2 +

N
∑

i1=1

∥

∥

∥ fi1

∥

∥

∥

2
+

N
∑

i1 ,i2=1
i1<i2

∥

∥

∥ fi1i2

∥

∥

∥

2
+ · · · (8)

The first norm square at the right hand side of this
formula measures the contribution of the constant
term to the whole norm. Similarly the first sum at
the right hand side measures the contribution of the
univariate components to the total norm whereas the
sum of first norm square and the first sum at the right
hand side measures the contribution of the purely ad-
ditive terms to entire norm. This interpretation is
equivalently applicable to all terms in fact and urges
us to define the following entities

σ0 ≡
‖ f0‖

2

‖ f ‖2

σ1 ≡

‖ f0‖
2
+

N
∑

i1=1

∥

∥

∥ fi1

∥

∥

∥

2

‖ f ‖2

σ2 ≡

‖ f0‖
2 +

N
∑

i1=1

∥

∥

∥ fi1

∥

∥

∥

2
+
∑N

i1 ,i2=1
i1<i2

∥

∥

∥ fi1i2

∥

∥

∥

2

‖ f ‖2

... ≡ ... (9)
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We call σ0 “Constancy Measurer” since it defines
the contribution percentage of the constant term in
total norm. σ1 is called “First Order Additivity Mea-
surer” since it becomes 1 when the multivariate func-
tion under consideration is purely additive, that is,
when it is exactly sum of univariate functions. If the
HDMR of the function under consideration sponta-
neously truncates at bivariate terms we can still in-
terprete the function additive but not purely. To dis-
tinguish these additivities we call σ2 “Second Order
Additivity Measurer”. This naming philosophy can
be generalized by calling σk “k–th Order Additivity
Measurer”. These measurers satisfy the following in-
equalities

0 ≤ σ0 ≤ σ1 ≤ ... ≤ σN ≤ 1 (10)

Hence they form a finite sequence of monotonicaly
increasing bounded from above elements. These
terms also define the relative norm of the truncation
errors. Indeed, (1 − σk) is the norm of the error aris-
ing when HDMR is truncated by discarding its all
components with multivariances higher than k. This
explains why low level HDMR truncations work well
when the multivariate function under consideration is
dominantly additive and fails if the function is dom-
inantly multiplicative. As a matter of fact, in the
case of dominantly multiplicative functions all terms
of the HDMR are generally required by making the
truncation approximation impossible. This urges us
to define another type of representation which can be
truncated at low level variant terms without appar-
ently affecting the approximation quality. We deal
with this approach in the next section.

3 FHDMR
The factorized high dimensional model representa-
tion (FHDMR) of a function f (x1, ..., xN) is defined
through the following formula

f (x1, ..., xN) = r0

















N
∏

i1

(

1 + ri1
(

xi1
))

















×

























N
∏

i1 ,i2=1
i1<i2

(

1 + ri1i2
(

xi1 , xi2
))

























· · · (11)

where r0, ri1
(

xi1
)

, ri1i2
(

xi1 , xi2
)

,... stand for the
FHDMR components and are undetermined yet. For
their determination we define a commutative set of
idempotent operators by denoting its general element

by Ik where k varies between 1 and N inclusive.
That is, they satisfy the following relations

I2
j ≡ Ik, 1 ≤ k ≤ N

I jIk ≡ IkI j, 1 ≤ j, k ≤ N (12)

We are going to use these operators as the ordering
agents and rewrite (11) as follows by inserting these
terms to appropriate places

f (x1, ..., xN) = r0

















N
∏

i1

(

I + ri1
(

xi1
)

Ii1
)

















×

























N
∏

i1 ,i2=1
i1<i2

(

I + ri1i2
(

xi1 , xi2
)

Ii1Ii2
)

























· · · (13)

The special form of this formula when all ap-
pearences of I js are replaced by the unit operator I
matches (11). We can do the same thing we have
done to (11) to (1) and obtain the following extended
form of HDMR

f (x1, ..., xN) = f0I +

N
∑

i1=1

fi1
(

xi1
)

Ii1

+

N
∑

i1 ,i2=1
i1<i2

fi1,i2
(

xi1 , xi2
)

Ii1Ii2 + · · · (14)

Now to construct the equations for the determination
of the FHDMR components we can expand all prod-
ucts in (13) to a sum and then use the commutativ-
ity and the idempotency of the indexed I operators
above and then we compare the coefficients of the
all products of indexed I operators above. This pro-
duces the following equations

r0= f0

ri1
(

xi1
)

=
fi1
(

xi1
)

f0

ri1i2
(

xi1
)

=
1
f0

fi1i2
(

xi1 , xi2
)

−
1
f 2
0

fi1
(

xi1
) (

xi2
)

... = ... (15)

whose solutions can be obtained uniquely because
of the structure of the equations. We are not going
to give them explicitly but we state that all FHDMR
components are obtained in terms of the HDMR
components and, as can be shown easily via mathe-
matical induction, they are mutually orthogonal.
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It is of course possible to truncate the product
of FHDMR at low level multivariate terms to get an
approximation and to expect high quality approxi-
mations for at least dominantly multiplicative func-
tions. However, despite all our efforts, we could not
be able to define certain entities to measure the mul-
tiplicativity over truncation products as we defined
additivity measurers in HDMR. This was the perhaps
most inconvenient aspect of FHDMR although many
applications were verifying its effectivity for dom-
inantly multiplicative functions. As our prediction
the inconvenience was coming from the definition
of FHDMR and certain aspects of the representation
ought to be modified. After several attempts we ar-
rive at a new representation which has the same roots
of FHDMR philosophically but a new simple struc-
ture enabling us to define multiplicativity measurers.
This will be the main focus of the next section.

4 LHDMR
The basic idea of LHDMR, Logarithmic High Di-
mensional Model Representation, is to expand the
natural logarithm of a nonnegative multivariate func-
tion to HDMR. Since nonnegativity is not a univer-
sally countered property we subtract a rather sim-
ple structured function from the multivariate function
under consideration to get nonnegativity. Then the
resulting function’s natural logarithm is expanded to
HDMR.

If φ (x1, ..., xN) denotes the minorant function of
f (x1, ..., xN), that is, the function which remains al-
ways equal to or less than f (x1, ..., xN) in the inte-
gration domain of HDMR then we can write

ln
[

f (x1, ..., xN) − φ (x1, ..., xN)
]

=

ϕ0 +

N
∑

i1=1

ϕi1
(

xi1
)

+

N
∑

i1 ,i2=1
i1<i2

ϕi1,i2
(

xi1 , xi2
)

+ · · · (16)

where the right hand side components are mutually
orthogonal and can be determined by tracing
the route presented in the construction of the HDMR
components in the second section. We call these
terms LHDMR components within an analogy to
HDMR. The minorant function φ (x1, ..., xN) is de-
termined by imitating the asymptotic nature of
f (x1, ..., xN) at its singularities in the hyperprismatic
integration domain of HDMR. If f (x1, ..., xN) does
not have any singularity in the integration domain of
HDMR then φ (x1, ..., xN) turns out to be a constant.
We have to emphasize on one important point that the
singularities which disable integrability under certain
weight functions may lead integrability under some

other weight functions. Hence, the selection of the
weight function in HDMR, FHDMR, or LHDMR is
an important issue. We call φ (x1, ..., xN) “Reference
Function” since it takes somehow the role of the ori-
gin in the space of the functions.

Equation (16) can be put into the following more
amenable form

f (x1, ..., xN) = φ (x1, ..., xN) +

eϕ0

















N
∏

i1=1

eϕi1(xi1)








































N
∏

i1 ,i2=1
i1<i2

eϕi1 ,i2(xi1 ,xi2)

























· · · (17)

We call this formula “Logarithmic High Dimensional
Model Representation (LHDMR)”. It defines a prod-
uct type representation relative to a multivariate ref-
erence function.

The structure in (16) urges us to define additiv-
ity measurers for the logarithm of the difference be-
tween the multivariate function under consideration
and the reference function. Additivity with respect to
a logarithm can be of course interpreted as the mul-
tiplicativity with respect to logarithm’s argument.
These measurers depend on the reference function
beside the function under consideration. Their ex-
plicit definitions can be given through the following
formula

ν0 ≡
‖ϕ0‖

2

‖ln( f − φ)‖2

ν1 ≡

‖ϕ0‖
2
+

N
∑

i1=1

∥

∥

∥ϕi1

∥

∥

∥

2

‖ln( f − φ)‖2

ν2 ≡

‖ϕ0‖
2 +

N
∑

i1=1

∥

∥

∥ϕi1

∥

∥

∥

2
+
∑N

i1 ,i2=1
i1<i2

∥

∥

∥ϕi1i2

∥

∥

∥

2

‖ln( f − φ)‖2

... ≡ ... (18)

We call these entities “Multiplicativity Measurers
Relative to φ (x1, ..., xN)”. They satisfy the following
inequalities

0 ≤ ν0 ≤ ν1 ≤ ... ≤ νN ≤ 1 (19)

4 Simple Illustrative Applications
and Conclusion

Consider the following purely multiplicative func-
tion and its HDMR over the hypercube 0 ≤ x j ≤ 1
(1 ≤ j ≤ N) under the unit weight function (Sobol’s
case)
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f (x1, ..., xN) = F1 (x1) · · ·FN (xN) (20)

where the univariate functions F1 (x1),...,FN (xN) are
all assumed to be given. The reference function of
LHDMR to this function can be taken zero every-
where in the integration domain of LHDMR. All
LHDMR components except the constant and uni-
variate ones of this case vanish. The constant and
univariate components are determined as

ϕ0 =

N
∑

i=1

∫ 1

0
dxi ln (Fi (xi))

ϕi = ln (Fi (xi)) −
∫ 1

0
dxi ln (Fi (xi)) ,

1 ≤ i ≤ N (21)

which mean that ν1 = ν2 = · · · = νN = 1. That is,
first order multiplicativity measurer explicitly shows
that the given function is purely multiplicative with
respect to zero function.

In the LHDMR of the function

f (x1, ..., xN) = F1 (x1) · · ·FN (xN) F jk

(

x j, xk

)

,

1 ≤ j, k ≤ N (22)

with the same geometry and weight of the previous
case we can show that ν2 = ν3 = · · · = νN = 1
which means that the function under consideration
is second order multiplicative. As we add more fac-
tors including higher order multivariance to the right
hand side of (22) LHDMR (with the same geometry
and the weight) exactly returns the function under
consideration when it is truncated at the same level
multivariance and the multiplicativity measurers pre-
dict the multiplicativity level at the same level multi-
variance.

These applications finalizes the paper. The con-
clusion is that the HDMR version (LHDMR) which
works for dominantly multiplicative functions has
now been developed. The monotonically increas-
ing multiplicativity measurers are also available now.
Hence the most important deficits of FHDMR are
now removed. We will use LHDMR for various fu-
ture applications.
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[3] Ö. Alış and H. Rabitz, Efficient Implementation
of High Dimensional Model Representations,
Journal of Mathematical Chemistry, 2001, VOL
29, pp 127-142.

[4] G. Li, S. W. Wang, H. Rabitz, S. Wang and P.
Jaffe, Global uncertainty assessments by high di-
mensional model representation (HDMR). Chem-
ical Engineering Science, 2002, VOL 57, pp
4445-4460.

[5] G. Li, M. Artamonov, H. Rabitz, S. Wang, P.G.
Georgopoulos and M. Demiralp, High Di-
mensional Model Representations Generated
from Low Order Terms -lp-RS-HDMR, Journal
of Computational Chemistry, 2003, VOL 24, pp
647-656.
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