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Abstract: - Real valued wavelets are used widely in signal processing applications. Although complex valued 
wavelets exists, but rarely used. Complex wavelet transform provides important phase information of the 
signal and it is almost shift-invariant. Due to these added advantages it can be very much useful for signal 
processing applications. This paper explores various properties of Daubechies complex wavelet transform. It 
shows that the nature of the complex wavelet coefficients does not change at multiple levels. This property 
provides an opportunity to apply the same function for the signal represented at multiple levels. We have 
applied the soft-thresholding function for denoising and deblurring of 1D and 2D signals and shown that the 
result gets improved at multiple levels.  

We have proposed a complex wavelet based method for denoising of signals corrupted with signal 
dependent and signal independent noise as well as a restoration method for blurred signals corrupted with 
noise. The proposed method is adaptive as it uses a soft-threshold function based on the standard deviation, the 
absolute mean and the absolute median of wavelet coefficients. The proposed threshold is level dependent as 
well. The effectiveness of the complex wavelet based signal restoration method has been tested and it was 
found that the performance of the proposed method is better than that of other similar type of methods that 
uses real valued wavelets. The method can be easily extended for other applications, such as texture analysis, 
object tracking, registration, segmentation, etc. 
  
Key-Words: - Complex Daubechies wavelet Transform, Shift-invariance, Denoising, Deblurring. 
 
1   Introduction 
The use of wavelet transform is becoming 
ubiquitous in signal processing, owing to the 
potential of multiresolution technique and 
economical representation at singularities. Recent 
wavelet researches are primarily focused on real-
valued wavelet bases as is evident by a large number 
of publications on the subject. However, complex 
valued wavelet bases exist and recently a few 
authors [1,2] have studied complex-valued wavelet 
filter banks. The complex Daubechies wavelets and 
some of its applications were discussed in [4,5]. 
Real-valued discrete wavelet transforms are very 
much useful for several signal processing 
applications like Compression, Denoising, 
Deblurring etc. However, these transforms suffer 
from two serious disadvantages: shift-sensitivity and 
no phase information. Use of complex-valued 
wavelet transform (CxWT) can minimize these 
disadvantages. 
     The objective of the present paper is two fold: 
first to explore construction and properties of 
complex Daubechies wavelet transform, and second 
to show the applicability of CxWT in signal 
denoising and deblurring. Reduced shift-sensitivity 
property of CxWT is discussed in the present work 

and it has been shown that the nature of wavelet 
coefficients changes erratically at multiscale when 
real-valued discrete wavelet transform (DWT) is 
used, unlike the complex case. This is the main 
observation in this paper. This property indicates 
that for those signal processing applications, which 
process information at multiple scales, CxWT can 
be better than DWT. We have also proposed 
threshold based denoising and deblurring methods. 
The proposed threshold is adaptive in nature and it 
depends on the standard deviation, the absolute 
mean and the absolute median of wavelet 
coefficients at a certain scale. Thus we call this 
scheme as soft-thresholding. The results of our 
method have been compared with that of methods 
that use real DWT. It has been proved conclusively 
that CxWT yields far better results. 
     The rest of paper is organized as follows: Section 
2 describes construction of Daubechies wavelet 
transform and its properties. Reduced shift-
invariance property of CxWT is discussed in section 
3. Section 4 deals with the application of the 
proposed method for denoising and deblurring of 
signals and the comparison of results with similar 
type of methods based on real DWT. In section 5 
some other possible applications of CxWT is given 
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and finally in section 6 discussions and conclusions 
are given. 
 
 
2   Daubechies CxWT 
 
2.1   Construction of Complex Daubechies 
Wavelet 
The basic equation of Multiresolution theory is the 
scaling equation 
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where, an s are coefficients. The an s can be real as 
well as complex valued and ∑an = 1.  
Daubechies’s wavelet bases {ψj,k(t)} in one 
dimension are defined through the above scaling 
function and multiresolution analysis of . One 
can define the Laurent series expansion on the unit 
circle: 
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For  to be Daubechies scaling function the 
following conditions must be satisfied: 
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that satisfies the above four constraints. The solution 
of equation (3) and (4) will lead to Daubechies 
scaling functions. Some of these solutions lead to 
complex valued scaling function. 

The construction of complex Daubechies wavelet is 
done as[6]. The generating wavelet  is given by, ( )tψ

     1( ) 2 ( 1) (2 )n

n
n

t aψ −= −∑ t nφ −

,ψ

              (5) 

( )tψ and share the same compact support [-N, 
N+1]. Daubechies found the solution of equation 
(4), where she selected R such that 

( )tφ

na  s are real. If 
we do not impose this condition then we can get the 

s as complex valued. This solution is known as 
complex Daubechies scaling function and this leads 
to complex Daubechies wavelet function. The 
complex solutions exist for all values of N ≥ 2. 
Symmetry is only possible with even N [2]. 

na

     Any function  can be decomposed into 
complex scaling function and mother wavelet as: 
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2.2   Properties of Complex Daubechies 
Wavelets 
All the usual properties of real Daubechies wavelet 
bases are derived from the amplitude 

2 1( ) ( )NF z z p z−= [6]. Thus those properties do not 
depend on the particular factorization of  and 
are maintained in the complex solution. However 
complex Daubechies wavelets exhibit some other 
important properties:  

( )Np z

 
2.2.1   Symmetricity and Linear Phase Property 
In [2] it has been shown that complex Daubechies 
wavelet can be symmetric. The symmetry property 
of filter makes it easy to handle the boundary 
problems for finite length signals. Recently in [7], a 
method to achieve both symmetry and approximate 
linear phase on a complex Daubechies wavelet is 
proposed. The linear phase response of the filter 
precludes the nonlinear phase distortion and keeps 
the shape of the signal. In the present work we have 
used Symmetric complex Daubechies wavelets 
(SDW), endowed with linear phase property. 
 
2.2.2   Relationships between real and imaginary 
components of scaling and wavelet functions 
Let ( ) ( ) ( )t k t i l tφ = +  be a scaling function and 

( ) ( ) ( )t u t i v tψ = + be a wavelet function. Let ( )l̂ ω  

and ( )k̂ ω are Fourier transforms of  and . 
Consider the ratio 

( )l t ( )k t
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Clonda[5] observed that ( )α ω is strictly real-valued 

and behaves as 2ω  for ω π< . This observation 
relates the imaginary and real components of scaling 
function: accurately approximates the second 
derivative of , up to some constant factor. 
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     Similarly for wavelet function ( )tψ , the ratio 
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is also real valued.  
     Another unexpected relationship is between the 
real component of complex wavelet and scaling 
function.  
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This quantity is strictly real-valued and behaves as 
1Nω + for ω π< [5]. 

 
2.2.3   Multiscale Edge Information 
From the above property 2.2.2, equations (7) and (8) 
indicate ( ) ( )l t k tα≈ ∆  and ( ) ( )v t u tβ≈ ∆ . This gives 
multiscale projections as, 

, , ,

, ,

( ), ( ) ( ), ( ) ( ), ( )

( ), ( ) ( ), ( )

j k j k j k

j k j k

f t t f t k t i f t l t

f t k t i f t k t

φ

α≈

= +

+ ∆
  (10) 

, , ,

, ,

( ), ( ) ( ), ( ) ( ), ( )

( ), ( ) ( ), ( )

j k j k j k

j k j k

f t t f t u t i f t v t

f t u t i f t u t

ψ

α≈

= +

+ ∆
  (11) 

From the above equation (10), it can be concluded 
that the real component of complex scaling function 
carries averaging information and the imaginary 
component carries Laplacian (i.e. edge information). 
Similarly from equation (11), it can be concluded 
that the imaginary component of complex wavelet 
function also carries edge information. In our recent 
work [8], we have presented a method for detecting 
strong edges, using only imaginary component of 
complex wavelet coefficients at multiscale.  
 
2.3   Advantages of using Daubechies CxWT 
Due to the following advantages Daubechies 
complex wavelet can be very useful for several 
applications: 
1. It is approximate shift-invariant [4,8]. 
2. Perfect Reconstruction 
3. No redundancy: Other popular complex wavelet 

transform like DTCWT [1] has a redundancy of 
2m:1 for m-D signal, while Daubechies CxWT 
have no such redundancy. 

4. Number of computations in Daubechies CxWT 
(although it involves complex calculations) is 
same as that of DWT, while DTCWT have 2m 
times computation as that of DWT for m-D 
signals. 

5. It provides true phase information [8].  
 
 
3   Shift-Invariance Revisited 
A transform is shift sensitive if an input signal shift 
causes an unpredictable change in transform 
coefficients. In DWT the shift sensitivity arises from 
downsamplers in the implementation. Daubechies 
CxWT has reduced shift sensitivity. Fig. 1 illustrates 
the reduced shift-sensitivity of Daubechies CxWT. 
Fig. 1(a) shows an input signal and shifted form of 
input signal by one sample. Fig. 1(b) shows high-
pass wavelet coefficients of the original and the 
shifted signals using DWT while fig. 1(c) shows the 
corresponding high-pass wavelet coefficient 
magnitudes. From the figure it is quite clear that the 
real wavelet transform is highly shift-sensitive 
whereas CxWT is approximate shift-invariant in 
nature. Our observation on Daubechies CxWT 
coefficient reveals that the magnitudes of wavelet 
coefficients vary slowly with input shift while the 
phase vary rapidly i.e. there is an unpredictable 
change in the phase of wavelet coefficients with 
input shift. This is illustrated in Fig. 1(d).      
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Fig.1. (a).Original signal and the shifted signal by one sample, 
(b).High-pass wavelet coefficients of the original and the shifted 
signal using db4 wavelet, (c).High-pass wavelet coefficient 
magnitude and (d). phase (in radian) of original and shifted 
signal using SDW6 complex wavelet.  
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     Shift-invariance property also affect the 
informational  content at  multilevel. In DWT as one 
moves towards higher level, the nature of wavelet 
coefficients at different subbands changes 
unpredictably while in the case of CxWT the nature 
of wavelet coefficients at different subbands remains 
preserved. This is shown in fig.2. Thus applying any 
operation at multiscale wavelet coefficients will 
work in uniform way for complex wavelet 
coefficients, unlike its real counterpart. 
     We have observed that for localized features such 
as sharp edges, there is strong local phase coherence 
across scales. The phase coherence increases with 
the strength of features. This is shown in figure 3. 
Fig. 3(a) and 3(e) shows two signals, one has a sharp 
feature and other has blurred features and Fig. 3(b)-
3(d) and Fig.3(f)-3(h) show phases of wavelet 
coefficients of Fig.3(a) and 3(e) at 1st, 2nd and 3rd 
levels. From this figure, it is clear that there exists a 
strong phase coherence for sharp features. 
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(c) 

Fig.2 (a). Original Input signal, (b). Detail real wavelet 
transform coefficients of signal at several levels, (c). Magnitude 
of detail complex wavelet coefficients at several levels. 
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Fig.3 (a). A sharp featured signal, (b)-(d). Phase of wavelet 
coefficients of the signal at 1st, 2nd and 3rd level, (e). A blurred 
featured signal, (f)-(h). Phase of wavelet coefficients of the 
blurred signal at 1st, 2nd and 3rd level. 
 
 
4   Applications of CxWT in Denoising 
and Deblurring 
 
4.1   Signal Denoising 
For denoising of signals, the threshold based 
denoising scheme is used. The proposed threshold is 
adaptive in nature. Donoho [9] has used the median 
estimator for the estimation of noise variance and 
based on this estimator, a threshold which depends 
on the median of absolute wavelet coefficients is 
used. In our recent work [3], we have found that a 
soft-threshold which depends on the standard 
deviation (σ), the absolute mean (µ) and the absolute 
median (M) of wavelet coefficients performs better. 
The value of soft-threshold is calculated as 

Threshold = ( )1

1

2
j

M
σ

µ−
             (12) 

where j is the level number for which the threshold 
is computed. 
     The computed threshold is applied only on the 
magnitude of wavelet coefficients. Thresholding is 
applied at several levels. The signal-independent 
noise gets removed at lower levels while the signal-
dependent noise is removed up to higher levels [3]. 
Inverse wavelet transform gives the reconstructed 
signal. Comparative results of denoising for one 
representative case by the proposed method and 
other denoising methods using real DWT[9,10] is 
given in fig. 4. 
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Fig.4. Denoising performance 

 
4.2   Signal Deblurring 
The observation model for any general system is  

       y = h*x + n              (13) 
where h, the linear operator, causes the blur in the 
image and n is the amount of noise. 
     In Fourier domain, the observation model is 

Y = HX + N              (14) 
where H, X, N and Y are DFT’s of h, x, n and y. 
Applying the Pseudo inverse filter, 

      ,

0 ,

NX if H
X H

otherwise

⎧ +⎪=⎨
⎪⎩

0>              (15) 

Here the term H-1N creates the colored noise in the 
deblurred signal. Neelamani et.al.[11] has attempted 
a shrinkage function in Fourier domain to remove 
the colored noise, but we observed that the colored 
noise can be removed by applying soft-thresholding 
of wavelet coefficients at several levels.  
     Our proposed algorithm for deblurring is as 
follows – 
    Step 1: Apply pseudo-inverse filter in Fourier 

domain to get estimate X . Inverse Fourier 
transform of X  gives an estimate of x as x . 

    Step 2: Compute Daubechies CxWT of x , say 
w. Soft-threshold the wavelet coefficients w by 
the computed multiscale threshold as in 
equation (12) at several scales. Inverse wavelet 
transform gives the deblurred image. 

Fig.5 shows a blurred image corrupted with noise 
and restored by Weiner filter, ForWaRD[11], TI-
WaveD[12] and the proposed method. Here in the 
proposed method we have removed colored noise 
upto 6 level. From the figure it is clear that the 
blocking artifacts present in ForWaRD and TI-
WaveD is not dominantly present in the proposed 
method 

 (a) (a) (a) (b) (c)

(d) (e) (f)

Fig.5 (a). Original Image, (b). Blurred and noisy Image 
(SNR=7.01dB), (c). Weiner filtered image (SNR=14.82 dB), 
(d). ForWaRD restored image (SNR=14.56dB), (e). WaveD 
restored image (SNR=14.85dB), (f). Restored image by the 
proposed method (SNR=16.42dB). 
 
 
5   Other Possible Applications 
Some of the applications, where the present method 
of multilevel complex wavelet analysis can be 
helpful, are mentioned below. 
     The multiscale property of CxWT make it well 
suited for texture analysis [13]. Shift-invariance 
property is important too, as it makes the texture 
feature vectors independent of precise texture 
location. It makes possible to make texture features 
rotationally invariant. 
     Since CxWT is Shift-invariance in nature, 
therefore, if the object is moving (equivalently 
shifted in frames), then the nature of wavelet 
coefficients in the region where the object is placed 
will not change. This helps to design efficient 
methods for tracking of moving objects. 
     Since the nature of complex wavelet coefficients 
at multilevel remains same, so it can be used for 
designing efficient methods for image registration as 
in real wavelet domain [14]. Efficient representation 
of multiscale wavelet coefficients allows to develop 
hierarchical segmentation algorithm as well. 
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6   Discussion and Conclusions 
The application and usability of CxWT is almost an 
unexplored area. In this paper, we have explored 
some properties of CxWT and its suitability for 
various signal processing applications. Symmetric 
Daubechies wavelet transform handles the boundary 
problems of signal efficiently and its linear phase 
property allows it to retain the shape of the signal. 
Daubechies complex wavelet coefficients carry edge 
information inherently, while in the case of real 
wavelet it requires to be computed. 
     Shift-invariance nature of CxWT is an important 
property. Nature of real wavelet coefficients at 
multiple scales is not same while the nature of 
magnitude of complex wavelet coefficients at 
several scales is approximately same as discussed in 
section 3. Thus applying the same function at 
multiple scales will work well in complex wavelet 
domain, unlike the real domain. Thus the 
thresholding of complex wavelet coefficients is 
much effective. 
     Most of signal independent noise is represented 
at a few lower levels, while signal dependent noise 
is represented at several scales. So for removal of 
signal independent noise, the improvement is better 
than that of real-domain denoising. But for signal 
dependent noise, the use of complex-domain 
denoising gives a large improvement. 
     Removal of the colored noise in signal deblurring 
application is a difficult task. In this paper it has 
been shown that multilevel signal representation in 
complex wavelet domain helps in the removal of 
colored noise significantly by the application of soft-
thresholding at multiple levels as discussed in 
section 4.2. Since for localized features, strong 
phase coherence across the scale is present in 
complex-domain, so by using this property one can 
have an idea about the blur quantity. 
     For all other applications that need translation 
invariance such as tracking of objects, texture 
analysis, signal registration, segmentation, etc, 
CxWT may be useful. 
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