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1 Abstract
Analytical solution of an optimal control problem for two coupled linear membranes subjected to point-
wise actuators together with a quadratic cost functional is given. The membranes are simply supported
along the boundaries. The basic control problem is to control excessive vibrations in the system.
Necessary conditions of optimality are investigated. Numerical results are provided for the efficiency of
the control mechanism.
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3 Introduction

The study of the dynamics of membrane-like struc-
tures is important to model the vibrations in differ-
ent disciplines of engineering including biomedical
devices. Modelling of complex mechanical struc-
tures is achieved by simple compounded two di-
mensional continuous systems that consist of plates
and/or membranes.

The investigation of the transverse vibrations
of an elastically connected complex systems was
conducted in [12, 13] in 1960’s. During the last
decade, the transverse vibration of different forms
of complex continuous systems have been studied
in [7, 8, 9] that are just some of the works by On-
iszczuk. In these papers, Oniszczuk has given the
analytical solutions of natural frequencies for free
and forced vibrations of different complex systems,
and how the frequencies can be affected by differ-
ent parameters. A well-investigated the transverse
vibrations of the complex systems have been fol-
lowed by the optimal control of such systems for
different aspects: Sadek et al in [10] investigates
the optimal control of two Euler-Bernoulli beams
by means of Maximum principle for a modified en-
ergy functional. The controllability and stability
of serially connected Timoshenko beams are inves-
tigated in [5]. The monographs [4] and [11] are
some of the others that focus on control aspects of
different vibrating systems. Kucuk and Sadek in
[2, 3] introduced a new system for a complex sys-
tem to control the vibrations by using calculus of
variations.

In this paper, we focus on controlling the vi-
brations of double-membrane system that consists

of two membranes and a Winkler elastic founda-
tion. It is aimed to control the vibrations exces-
sively in the system. Therefore, we implemented a
finite number of control actuators in the domains
of membranes. For the proposed new system, we
find the optimal control actuators by using calcu-
lus of variations to derive the necessary conditions
of optimality. Necessary conditions of optimality
are obtained as Fredholm integral equations with
degenerate kernel that lead to a system of linear
equations. Then, we are able to write the opti-
mal control actuators analytically as solutions of
the system of linear equations. Finally, we illus-
trate the robustness of the developed theory by a
numerical simulation for a system that has one ac-
tuator in each membrane. The details and different
aspects of the present work can be found in [1].

4 Formulation of the Problem

The double-membrane system contains three lay-
ers: two thin, homogeneous membranes in which
every point has an isotropic state of tension, and a
massless homogeneous Winkler foundation to bind
the two membranes. The transverse vibrations of
the system is described by a set of two coupled
non-homogeneous partial differential equations [7],
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m1ẅ1− N1 ∆w1 + k(w1 − w2) = f1(x, y, t) (1)

=

nm∑

j=1

f1j(t)δ(x− xm1

j , y − ym1

j )

m2ẅ2− N2 ∆w2 + k(w2 − w1) = f2(x, y, t) (2)

=

nm∑

j=1

f2j(t)δ(x− xm2

j , y − ym2

j )

where w1 = w1(x, y, t) (w2 = w2(x, y, t)) is the
transverse displacement in membrane 1 (mem-
brane 2); fi(x, y, t) is a transverse continuous load-
ing applied along the edges of the two membranes;
Ni is the uniform constant tension per unit length
for the membranes; k is the stiffness modulus of
a Winkler elastic layer; δ( , ) is the Dirac distri-
bution; the locations of the actuators (xm1

j , ym1

j )
and (xm2

j , ym2

j ) are from (0, a) × (0, b); fij(t) ∈

L2([0, tf ]) is the amplitude (or influence) of dis-
tributed actuators, tf is the terminal time; and

mi = ρihi, ẇi =
∂wi

∂t
,∆wi =

∂2wi

∂x2
+
∂2wi

∂y2
,

in which ρi is the mass density, and hi is the thick-
ness of the membranes and i = 1, 2. The mem-
branes are simply supported on the edges:

wi(0, y, t) = wi(a, y, t) = wi(x, 0, t) =

wi(x, b, t) = 0,
(3)

where a and b are the dimensions of the mem-
branes. The initial conditions are assumed to be
of the following form

wi(x, y, 0) = w0
i (x, y), ẇi(x, y, 0) = v0

i (x, y) (4)
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Figure 1: An elastically connected rectangular
double-membrane system with the control param-
eters fik, i = 1, 2 and k = 1, . . . , nm

The performance of the system under the influ-
ence of the applied control forces f1j(t) and f2j(t)

in (1) and (2), respectively, are measured by the
following performance index function

J (f11, . . . , f1nm
, f21, . . . , f2nm

) = J (F)

where

J (F) =
1

2

∫ b

0

∫ a

0

{

µ1w
2
1(x, y, tf )+

µ2ẇ
2
1(x, y, tf ) + µ3w

2
2(x, y, tf ) +

µ4ẇ
2
2(x, y, tf )

}

dxdy+

1

2

∫ tf

0

(
nm∑

i=1

ǫif
2
1i(t) +

nm∑

i=1

αif
2
2i(t)

)

dt.

(5)

Here in (5), µi ≥ 0 for i = 1, 2, 3, 4 such that
µ1 + µ2 + µ3 + µ4 6= 0; ǫi ≥ 0, and αi ≥ 0, i =
1, . . . , nm are the weight factors that determine the
influence of the distributed actuators. The first
functional of (5) is the contribution of the modi-
fied energy due to the membrane 1 and membrane
2, and the other two functionals represent a con-
tribution of the energy that accumulates over the
control duration [0, tf ].

The optimal control problem of interest can be
stated as the following: Find an optimal f⋆

ij(t) ∈

L2([0, tf ]) for i = 1, 2 and j = 1, . . . , nm such that

J (F⋆(t)) ≤ J (F(t)), ∀fij(t) ∈ L2([0, tf ])

subject to (1)-(4).
Existence and uniqueness of the optimal control

of the system of the partial differential equations
are thoroughly discussed in a classical work [6].

5 Solution of the vibration

problem

Of great significance is the classical modal expan-
sion (separation of variables in general), which
transforms the basic optimal control problem into
optimal control of lumped-parameter system, to
solve vibrations of the considered system. The
modal expansion assumes the solutions for vibra-
tions in the form of

w1(x, y, t) =

N∑

m,n

Ψmn(x, y)
︷ ︸︸ ︷

ϕm(x)ψn(y)T 1
mn(t) (6)

w2(x, y, t) =

N∑

m,n

ϕm(x)ψn(y)T 2
mn(t) (7)

where T 1
mn(t) and T 2

mn(t) are unknown time func-
tions, and N is the number of harmonics taken
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in the calculations with some truncated error as a
practical approach. The orthonormal sets of eigen-

functions,

{

ϕm(x)

}
∞

m=1

,

{

ψn(y)

}
∞

n=1

, of the op-

erator

Lw =
∂2w

∂x2
+
∂2w

∂y2

are defined as

{

ϕm(x)

}

m

=

{√

2

a
sin(amx)

}
∞

m=1

(8)
{

ψn(y)

}

n

=

{√

2

b
sin(bny)

}
∞

n=1

.

where am = a−1mπ and bn = b−1nπ. By substi-
tuting the solutions (6) and (7) into (1) and (2),
we obtain the following second order differential
equations in time

T̈ 1
mn(t) +G1

mnT
1
mn(t) −G10T

2
mn(t) = f1(t),(9a)

T̈ 2
mn(t) +G2

mnT
2
mn(t) −G20T

1
mn(t) = f2(t),(9b)

where

Gi
mn =

Nikmn + k

mi

;Gi0 =
k

mi

;

f1(t) = m−1
1

nm∑

j=1

f1j(t)Ψmn(xm1

j , ym1

j ),

kmn = a2
m + b2n

f2(t) = m−1
2

nm∑

j=1

f2j(t)Ψmn(xm2

j , ym2

j )

with the proper form of initial conditions given by
(4). We rewrite the coupled system of second or-
der differential equations (9) in time as a coupled
system of first order differential equations by in-
troducing new variables yi. It follows immediately
that the set of second order differential equations
in (9) can be written as

ẏmn

1
(t) = y2

mn(t),

ẏmn
2 (t) = −G1

mny1
mn(t) +G10y3

mn(t) + f1(t),

ẏmn

3
(t) = y4

mn(t), (10)

ẏmn

4
(t) = −G2

mny3
mn(t) +G20y1

mn(t) + f2(t),

or in a more compact form

dY

dt
= AY + F(t) (11)

where A is a 4× 4 diagonalizable constant matrix.
The matrices in the latter equation are of the fol-
lowing forms

Y =







ymn

1

ymn

2

ymn

3

ymn

4







; F(t) =







0
f1(t)

0
f2(t)







A =







0 1 0 0
−G1

mn 0 G10 0
0 0 0 1

G200 −G2
mn 0






.

(12)

To solve the coupled system of differential equa-
tions in (11), we first define a new matrix B whose
columns are the eigenvectors v1, v2, v3, and v4 of
A. Then we introduce a new dependent variable X

with
Y(t) = BX(t) (13)

Substituting this new variable for Y into (11) leads
to

Ẋ(t) = (B−1AB)X(t) + B−1
F(t) (14)

= DX(t) + G(t)

where D = B−1AB is diagonal matrix with the
eigenvalues of A are on the main diagonal, and
G(t) = B−1

F(t) defined as

G(t) = β̃







1
1
−1
−1






f1(t) +







∆̃1

∆̃1

∆̃2

∆̃2






f2(t) (15)

where β̃, ∆̃1 and ∆̃2 are some constants.
Equation (14) is a system of four uncoupled

differential equations for Xmn
i (t) , i = 1, 2, 3, 4. In

scalar form, we observe the following equations

dXmn
i (t)

dt
= λiX

mn
i (t) + Gi(t) (16)

with the proper form of the initial conditions given
in (4), and the solutions of (10) are of the following
form:

Xmn
i (t) = eλit

∫ t

0

e−λisGi(s)ds+ cie
λit (17)

where ci are constants to be determined.
The deflections in membrane 1 and membrane

2 are obtained as

w1(x, y, t) =

N∑

mn

Ψmn(x, y)

4∑

j=1

b1jX
mn
j (t), (18)

w2(x, y, t) =

N∑

mn

Ψmn(x, y)

4∑

j=1

b3jX
mn
j (t), (19)

where B = [bij ]4×4 whose columns are the eigen-
vectors of A in (12), and Xmn

j (t) is defined in (17).
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6 Necessary Conditions

The necessary conditions of optimality for the opti-
mal controls are obtained by using calculus of vari-
ation. The first variation of the performance index
function (5) with respect to fik, k = 1, . . . , nm and
i = 1, 2 leads to coupled integral equations for each
actuators. Solving the integral equations gives the
optimal actuators.

To derive the necessary conditions of optimal-
ity for the applied actuators in the domain of the
membrane 1 and membrane 2, we first fix the lo-
cation of the actuators, and weight factors in the
performance index function (5) and differentiate
(5) with respect to fik, k = 1, . . . , nm and i = 1, 2.
The two differentiations of (5) lead to the coupled
integral equations that returns the optimal actua-
tors.

After substituting the solutions (18) and (19)
for w1 and w2, respectively, into (5), the perfor-
mance index can be rewritten as

J (F ) =
1

2

N∑

mn

4∑

i=1

µi

( 4∑

j=1

bijX
mn
j (tf )

)2

+

1

2

∫ tf

0

(
nm∑

i=1

ǫif
2
1i(t) +

nm∑

i=1

αif
2
2i(t)

)

dt.

(20)

Taking the first variation of (20) with respect to
f1k leads to

δf1k
J (F ) =

∫ tf

0

{ N∑

mn

4∑

i=1

µi

( 4∑

j=1

bij

Xmn
j (tf )

) 4∑

j=1

bije
λj(tf−s)Ḡ1j

Ψmn(xm1

k , ym1

k ) + ǫkf1k(s)

}

∆f1k(s)ds = 0.

(21)

Since (21) is true for all variations of ∆f1k, we ob-
serve the following for fixed k = 1, . . . , nm

N∑

mn

4∑

i=1

µi

[ 4∑

j=1

bij

{∫ tf

0

eλj(tf−r)

[

Ḡ1j

nm∑

q=1

f1q(r)

Ψmn(xm1

q , ym1

q )+Ḡ2j

nm∑

q=1

f2q(r)Ψmn(xm2

q , ym2

q )

]

dr

+ cje
λjtf

}]

×

[ 4∑

j=1

bije
λj(tf−s)Ḡ1jΨmn(xm1

k , ym1

k )

]

+ ǫkf1k(s) = 0

(22)

where Ḡ1j and Ḡ2j are the terms from the column
coefficient matrices of f1(t) and f2(t) given in (15).

A similar result is obtained from the variation
of J (F ) with respect to f2k for fixed k = 1, . . . , nm.
The coupled nonhomogeneous Fredholm integral
equations with degenerate kernel can be observed
for each fixed k as

N∑

mn

[ nm∑

q=1

4∑

i=1

∫ tf

0

(

Kqk
imn(s)f1q(r)+

K
qk

imn(s)f2q(r)

)

eλi(tf−r)dr + P k
mn(s)

]

+ ǫkf1k(s) = 0,

(23a)

N∑

mn

[ nm∑

q=1

4∑

i=1

∫ tf

0

(

Lqk
imn(s)f1q(r)+

L
qk

i,mn(s)f2q(r)

)

eλi(tf−r)dr + P
k

mn(s)

]

+ σkf2k(s) = 0.

(23b)

where P (s),K(s),K(s) and others are known
4nm × 1 column matrices.

The integral equations in (23) are transformed
into system of linear equations in the following
compact form

(A+ IE) C + A C + H = O,
B C + (B + IS)C + H = O.

(24)

The solution of the system of linear equations for
the unknown C and C in (24) writes the optimal
actuators f1q and f2q as

f1k(s) = −
1

ǫk

N∑

mn

{

P k
mn(s)+

nm∑

q=1

4∑

i=1

(Kqk
imn(s)cqi +K

qk

imn(s)cqi )

}

,

f2k(s) = −
1

σk

N∑

mn

{

P
k

mn(s)+

nm∑

q=1

4∑

i=1

(Lqk
imn(s)cqi + L

qk

imn(s)cqi )

}

(25)

where k = 1, . . . , nm. The optimal control param-
eters derived in (25) are for a fixed membrane ten-
sions and location of the actuators.
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7 Numerical Simulations

In this section, we consider an example of a double-
membrane continuous system that consists of two
membranes bounded through a Winkler elastic
foundation. For the simplicity of the analysis, it
is assumed that the double-membrane system is
subjected to the initial conditions (4) of the form :

wi(x, y, 0) = Φ11(x, y),

(26)

ẇi(x, y, 0) = 0 i = 1, 2

where Φ11(x, y) is given by (6). The initial condi-
tions given in (26) allow us to study the behavior
of the fundamental mode of the system.

In numerical simulations, the following param-
eters are used to characterize the physical and ge-
ometrical properties of the double-membrane sys-
tem: a = 1m, b = 2m, k = 2 × 102, N1 = N2 =
50kg/m2, h1 = h2 = 1 × 10−2m, m1 = m2 =
0.2, tf = 18s, ρ1 = ρ2 = 20kg/m3, (xm1

1 , ym1

1 ) =
(0.3, 1.1), (xm2

1 , ym2

1 ) = (0.8, 1.5)
The energy of the system before any actuator im-
plemented is 529.4; however, the controlled sys-
tem reaches the minimal energy 0.00002 when only
one actuator applied to membrane 1. This dras-
tic achievement in energy results in completely
damped out vibrations in the first membrane that
can be observed in Figure 2 for the deflection and
Figure 3 for the velocity. The deflection and veloc-
ity of the membrane 1 in Figure 2 and Figure 3,re-
spectively, are observed at (x, y) = (0.5, 1). Ad-
dition to riding of the vibration in the first mem-
brane, the same success is observed in the second
membrane as well.

0 2 4 6 8 10 12 14 16 18
−1.5

−1

−0.5

0

0.5

1

1.5

 t

 w
1(t

)

Figure 2: The deflection of Membrane 1 after the
control.

8 Remarks and Conclusion

Vibrations of two parallel rectangular membranes
connected by a Winkler elastic foundation are
studied to prevent any undesirable resonance in the
complex continuous system. The two membranes
that are homogeneous, isotropic, and thin are sub-
jected to simply supported boundary conditions.
The proposed new system damps out the undesir-
able vibrations by applying point-wise controllers
in the domain of the membranes.

0 2 4 6 8 10 12 14 16 18
−80

−60

−40

−20

0

20

40

60

80

 t

 V
el

oc
ity

Figure 3: The velocity of Membrane 1 after the
control.

The modal expansion technique to evaluate the
optimal control of the distributed parameter sys-
tem is of great advantage to reduce the problem
to the optimal control of the lumped parameter
system (LPS). Calculus of variation is used to de-
rive the necessary conditions of optimality for the
point-wise control of the LPS, and the coupled non-
homogeneous Fredholm integral equations with de-
generate kernel are obtained for the necessary con-
ditions. Then, the integral equations are trans-
formed into the system of linear equations. Fi-
nally, the optimal point-wise controllers are given
explicitly as the solutions of the system of linear
equations.

In short, we conclude that the proposed mech-
anism is an effective way to determine the opti-
mal controllers. As a result, the performance index
function becomes almost zero at the terminal time
and the vibrations are damped out completely.
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