

Adaptive Checkpointing Schemes for Fault Tolerance in

 Real-Time Systems with Task Duplication

Zhongwen Li
1 ,2

, Hong Chen
1

1
Information Science and Technology College,

Xiamen University,

Xiamen 361005, China

2
Zhongshan Institute of UESTC,

Zhongshan, 528402, China

Abstract: Dynamic adaptation techniques based on checkpointing is studied in this paper. Placing

store-checkpoints and compare-checkpoints between CSCP (store-and-compare-checkpoint), we first

present adaptive checkpointing schemes in which the checkpointing interval for a task is dynamically

adjusted on line. Introducing the overheads of comparison and storage, the average execution times to

complete a task for proposed schemes are obtained, using renewal equations. Further, we have dis-

cussed analytically the optimal numbers of checkpoints that minimize the average execution times.

We then extend proposed schemes to a set of multiple tasks in real-time systems. Simulation results

show that compared to previous method, the proposed approach significantly increases the likelihood

of timely task completion.

Key words: Fault-tolerant computing, Checkpointing interval, SCP, CCP, Multiple tasks, Task Dupli-

cation

Foundation item: Fujian natural science foundation (A0410004), NCETXMU program (0000-X07116) and Xiamen University research foundation

(0630-E23011).

1 Introduction
Fault tolerance is typically achieved in

real-time systems through checkpointing and

task duplication. Checkpointing enables reduc-

ing the time to recover from a fault by saving

intermediate states of the task in a secure stor-

age. Generally speaking, each checkpoint serves

two purposes. The first is to save the processor

state and to reduce the fault-recovery time by

supplying an intermediate correct state, thus

avoiding rollback to the beginning of the task.

The second purpose is fault-detection, which is

achieved by executing and comparing the proc-

essors’ states at each checkpoint in task duplica-

tion systems. In task duplication systems, such

as DMR (Double Modular Redundancy),

TMR-F, DMR-F-1 and RFCS
[1]
, the task is exe-

cuted on more than one processor and the states

of the processors are compared to detect faults.

Several papers describe schemes that combine

checkpointing and task duplication
[2-6]

. When

there is a big difference between the time to

store the processors’ states and the time to

compare these states, the overhead time is de-

termined mainly by the operation that takes a

longer time. In order to avoided unnecessary

overhead, some people have researched SCP

and CCP checkpoint
[2,4,6]

.

In this paper, we present adaptive schemes to

dynamically adjust checkpointing interval to

reduce task execution time for single and multi-

ple real-time tasks. These schemes are also de-

signed to tolerate up to k fault occurrences. The

proposed adaptive checkpointing is consisted of

two schemes in which we place SCP or CCP

between consecutive CSCPs, respectively. For

the sake of simplicity, we use a double modular

redundancy (DMR) in which a task is executed

on two processors.

we assume that the time for a failure to occur

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp650-655)

is exponentially distributed with constant failure

rate λ . Some notation used in our paper is as

following:

ts: the time to store the states of processors.

tcp: the time to compare their states.

tr: the time to roll back the processors to a

consistent state.

tR : remaining execution time (not including

checkpointing and recovery).

dR : time left before the deadline.

fR : an upper bound on the remaining number

of faults that must be tolerated.

2 Adaptive checkpointing scheme for

single real-time task
We assume that shared memory is fault

tolerant and that operation system kernel has

adequate redundancy and uses robust data

structures to enable fault containment. Assume

task τ has a period T , a deadline D , a

worst-case computation time N when there are

no fault in the system. An upper boundary k

represents the number of fault occurrences that

have to be tolerated. C is the overhead of a

checkpoint. Faults arrive as a Poisson process

with parameter λ , the average execution time

for the task is minimum, if a constant

checkpoint interval of 2 /C λ is used
 [7]
. We refer

to this as the Poisson-arrival approach. If the

Poisson-arrival scheme is used, the effective

task execution time in the absence of faults must

be less than the deadline D. Assume the

fault-free execution time for a task is N, the

worst-case execution time for up to k faults is

minimum, if the constant checkpoint interval is

set to kNC /
[8]
. This is the k-fault-tolerant ap-

proach. In addition, we assume that task τ is
divided equally into n intervals of length N

T
n

 =
,

and at the end of each interval, CSCP is always

placed.

2.1 SCPs and CCPs
Each CSCP interval is divided equally into

m intervals of length

=
m

T
T
1

. The SCP are

placed between the CSCPs, the states of two

processors are stored at iT1 and jT (i=1,2,…,

m-1). If two states do not get an agreement at

time jT, then, we need to find the most recent

SCP with identical states and roll back to it.

Two processors are rolled back to (i-1)T1 be-

cause some errors have occurred during ((i-1)T1,

iT1), and repeat the execution from (i-1)T1. The

average execution time R1(m) for a CSCP inter-

val ((j-1)T, jT) is given by a renewal-equation
[5,

9]
:

Therefore, the average execution time of a

task RSCP(n)=nR1(m).

Replace
1

/m T T= , we have

121
1 1

1 1 1 1

()
() [()](1)......(1)

2

T

s cp s cp

T TT T T
R T T t t T t t e

T T T T

λ+
= + + + + + −

 If
1 0T +→ , then R1(T1)=+∞ . Let T1=T, we

have 2

1 1() ()
T

s cpR T T t t e λ= + + . Thus, there exists a

finite (]jTTjT ,)1(
~
1 −∈ which minimizes R1(T1).

Differentiating equation (1) with respect to T1

and setting it equal to zero, we get
1T
� . Procedure

num_SCP(T) for calculating m� which mini-

mize)~(1 mR is described in Figure 1.

The adaptive checkpointing with SCPs,

adapchp-SCP (D,E,C,k, λ), is described in Fig-

ure 2. A check is performed to see if the task has

been completed in line 4, and line 5 checks for

the deadline constraint. The length of SCP and

CSCP interval is set in line 6 and line 7, respec-

tively. In line 9, a check is performed to see if

fault is detected. If there is no fault, then con-

tinue to run task, otherwise, roll back to previ-

ous SCP with identical states and continues

execution, which are described from line 12 to

line 16. In line 2 and 14, we use procedure in-

terval (Rd, Rt, C, Rf, λ)
[10]

to calculate the

checkpoint interval.

Now we place CCP between the CSCPs.

)1)](())(1(
2

1
[

)1())]1(([

)()(

1

1

1

1

2
11

1
)1(

2
11

2
11

−+++++++=

−−−+++++

++=

∑∫
=

−

−

−

T
rcpscps

m

i

iT

Ti

t
rcps

mT
cps

ettmtTmmtmtmT

edimRttmtmT

etmtmTmR

λ

λ

λ

Fig. 1 Procedure for calculating the m�

Procedure num_SCP(T){
1. Find 1

~
T which minimizes R1(m);

2. if (1

~
T <T) {

3. m= 1~/TT ;

4. if (R1(m)≤R1(m+1)) then
5. ;~ mm =
6. else ;1~ += mm
7. } else ;1~ =m
8. return ;~m }

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp650-655)

The states of the two processors are compared

at iT2 and jT (i=1,2,…, m-1). If two states do not

reach to an agreement at iT2 and jT, that means

some errors have occurred during this interval,

the two processors will be rolled back to (j-1)T.

The average execution time R2(m) for an inter-

val ((j-1)T, jT) is given by a renewal-equation:

 Therefore, the average execution time

RCCP(n)=nR2(m). Replacing 2/m T T= , we

have:

0 2 0

0 2

22 2

2 2 2
() (1)(2)

1

cpT T

s T

T t
R T t e e

e

λ λ
λ−

+
= + −

−

If
2 0T +→ , then R2(T2)= +∞ . If T2=T,

then 2

2 2() () T

s cpR T T t t e λ= + + . Therefore, there

exists a finite (]jTTjT ,)1(
~
2 −∈ , which minimizes

R2(T2). Differentiating equation (2) with respect

to T2 and setting it to zero, we can get 2T
� . We

can use the similar approach described in figure

1 to calculatem� which minimize
2 ()R m� . In figure

2, let “Insert CCP with interval length itv;” re-

place line 6, let “if (no error has been detected

at CCP/CSCP);” replace line 9, and let “Roll-

back to last CSCP;” replace line 12. Then, we

obtain the adaptive checkpointing with CCP,

namely adapchp-CCP (D,N,C,k,λ) procedure.

2.2 Simulation results
 We carried out a set of simulation experi-

ments to evaluate our adaptive checkpointing

schemes (referred to as ADTSCPs and

ADTCCPs) and to compare it with the Pois-

son-arrival (referred to as Poisson), the

k-fault-tolerant (referred to as k-f-t) checkpoint-

ing schemes and ADT
[10]

. Faults are injected

into system using a Poisson process with vari-

ous values for the arrival rateλ. Due to the

stochastic nature of the fault arrival process, the

experiment is repeated 10,000 times for the

same task and the results are averaged over

these runs. We are interested here in the prob-

ability P that the task completes on time, either

on or before the stipulated deadline. As in [10],

we use the term task utilization U to refer to the

ratio N/D. In order to compared with results of

[10], we let tr=0.

2.2.1 SCPs

As said above, additional SCPs scheme fits

systems which overhead time is determined

mainly by the time to compare processor’ states.

Therefore, the parameters is as following:

D=10000, ts=1, tcp=10, C=11.

Table 1 Comparison between ADTSCPs with other

schemes
Probability of timely completion of tasks, P U)10(2 2−×λ

 Poisson k-f-t ADT ADTSCPs

0.13 0.704 0.701 0.716 0.9649 0.76

0.15 0.532 0.512 0.536 0.9319

0.13 0.468 0.468 0.470 0.8818 0.78

0.15 0.385 0.280 0.409 0.8065

(a) k=5

Probability of timely completion of tasks, P U)10(2 4−×λ

 Poisson k-f-t ADT ADTSCPs

1.0 0.7560 0.7592 0.7575 0.7715 0.92

2.0 0.4387 0.4412 0.4780 0.5310

1.0 0.3843 0.3852 0.3785 0.3942 0.95

2.0 0.1449 0.1449 0.2777 0.2797

(b) k=1

2.2.2 CCPs

Additional CCPs scheme fits systems

which overhead time is determined mainly by

the time to store processor’ states. Therefore,

the parameters is as following: D=10000, ts=10,

tcp=1, C=11.

()

2

2

2

2

2

2 2

2

2

2 2

2

2 2
1

1

2

(1)

22 2

2

() ()

[()] (1)

(1)

(1)
1

mT

cp s

m iT
t

cp r
i T

i

mT
t

s
m T

cpT mT

s T

R m mT mt t e

iT it t R m d e

t d e

T t
t e e

e

λ

λ

λ

λ λ
λ

−

−

−
=

−

−

= + +

+ + + + −

+ −

+
= + −

−

∑ ∫

∫

Fig. 2 Adaptive checkpointing with SCPs

Procedure adapchp-SCP (D, N, C, k, λ){
1. Rt=N; Rd=D; Rf=k;
2. Itv=interval(Rd, Rt, C, Rf, λ);
3. m=num_SCP(Itv); mItvitv /= ;
4. while (Rt>0) do {
5. if (Rt> Rd) break with task failure;
6. Insert SCP with interval length itv;
7. Insert CSCP with interval length Itv;
8. Update Rt, Rd;
9. if (no error has been detected at CSCP)
10. Resume execution;
11. else{
12. Rollback to the most recent SCP with identi-

cal states;
13. Rf= Rf-1;
14. Itv=interval(Rd, Rt, C, Rf, λ);
15. m=num_SCP(Itv); mItvitv /= ;
16. Resume execution;}}

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp650-655)

Table 2. Comparison between ADTCCPs with other

schemes
Probability of timely completion of tasks, P U)10(2 2−×λ

 Poisson k-f-t ADT ADTCCPs

0.13 0.7071 0.7027 0.7191 0.9693 0.76

0.15 0.5298 0.5068 0.5337 0.9306

0.13 0.4623 0.4623 0.4671 0.8938 0.78

0.15 0.3843 0.2780 0.4062 0.8058

(a) k=5

Probability of timely completion of tasks, P U)10(2 4−×λ

 Poisson k-f-t ADT ADTCCPs

1.0 0.7528 0.7579 0.7581 0.7650 0.92

2.0 0.4497 0.4490 0.4849 0.5416

1.0 0.3941 0.4007 0.3887 0.4030 0.95

2.0 0.1544 0.1567 0.2919 0.2934

(b) k=1

The performances of the four schemes,

measured by the probability of timely comple-

tion of the task, are comparable. For 001.02 >λ

and U>0.7(high fault arrival rate and relatively

high task utilization), ADTSCPs and ADTCCPs

schemes clearly outperforms the other three

schemes, the results are shown in table 1(a), and

table 2(a). For 001.02 <λ and U>0.9 (low fault

arrival rate and relatively high task utilization),

we can get the same result in the case of

001.02 >λ and U>0.7, see table 1(b) and table

2(b).

3 Adaptive checkpointing scheme for

multiple real-time tasks
3.1 Extensions of adaptive checkpointing to

multiple tasks
Now, we extent adaptive checkpointing

procedures, namely adapchp_SCP(D,E,C,k, λ)

and adapchp_CCP(D,E,C,k, λ), to a set of mul-

tiple real-time tasks. We assume that there is a

setΨ={ 1τ ， 2τ ，…， nτ } of n tasks that must be

scheduled by the system in the absence of errors.

Any task iτ in Ψ has a period
iT , a deadline

iD , a computation time
iE under fault-free con-

ditions (
iE ≤ iD ≤ iT), and a priority level ip .

For each hyper-period, we can obtained a

sequence of m instance Ф={
1θ ,

2θ ,…,
mθ }.

In addition, any instance
iθ (mi ≤≤1) has a

starting time ia , an execution time ib , and a

deadline ic . According to EDF, we

have mccc ≤≤≤ �21 . Now, we develop a

checkpointing scheme that inserts checkpoints

to each instance by exploiting the slacks in a

hyper-period. It must determine an appropriate

value for the deadline that can be provided as an

input parameter to the adapchp_SCP(D,E,C,k, λ)
and adapchp_CCP(D,E,C,k, λ) procedures. Of
course, in order to meet the timing constraint

and ensure time redundancy can be exploited

for fault-tolerance, this deadline must be no

greater than the exact instance deadline and no

less than the instance execution time. In order to

compute this parameter, we employ the method

of [11], which incorporates a preprocessing step

immediately after the offline EDF scheduling is

carried out and the resulting values are then

provided for subsequent online adaptive check-

pointing procedure. We let ih denote the slack

time for instance
iθ (mi ≤≤1). Like paper [11],

we add a pseudo instance
0θ , which has pa-

rameters 00000 ==== hcba . According to the

deadline constraints, we have

1 1 1 1max{ , }i i i i i i ia b h a b h c+ + + ++ + + + ≤ ，

where0 1i m≤ ≤ − . To ensure each job has the

minimum time-redundancy for fault-tolerance,

paper [11] require the slack of each job to be

greater than a constant threshold value Q ,

which is defined as a given number of check-

points. Then we have Qh i ≥ , where mi ≤≤1

In this paper, we us Matlab to calculate ih that

maximize the sum of all slacks
1

m

ii
h

=∑ .

Let vi represent checkpointing deadline,

which is the deadline parameter provided to

adapchp_SCP(D,E,C,k, λ) and

adapchp_CCP(D,E,C,k, λ) procedures. Assume

the actual starting time of
iθ is ia

′，and the

actual execution time is
ib
′ . Than the actual

starting time 1ia+
′ of the next instance

1+iθ can

be calculated as
1 1

max{ , }
i i i i
a a a b+ +

′ ′ ′= + , the ac-

tual slack time
1i

h +
′ of

1+iθ is adjusted as

1 1 1 1()i i i ih h a a+ + + +
′ ′= − − , and the actual checkpoint-

ing deadline 1iv +
′ is adjusted as

1

1

1 1

 1 0

 1 0.

i

i

i i

b if hi
v

b h if hi

+
+

+ +

+ <′ =
+ + ≥

[11]

.

3.2 Simulation results

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp650-655)

 Like paper [11], we consider two tasksΨ

={ 1τ ， 2τ }, 1τ =(5000, 7000,12000) and

2τ =(4000, 11000, 18000). After offline sched-

uling is carried out using EDF, we obtain the

sequence of instances of tasks. Note that
1θ ,

3θ ,

and
5θ are instances of 1τ ,

2θ and
4θ are in-

stances of 2τ . Here we assume that the CSCP

checkpoint cost is 11, and we require that at

least 20 CSCP checkpoints are inserted for each

slack. Then Q equals 220. The slack values

generated by Matlab are

1 2 3 4 5
899, 1101, 1476, 2854, 670h h h h h= = = = = .

The parameters of instances are listed in Table

3.

Table 3 Instances parameters of the two-task exam-

ple

ia

ib
ic

ih

1θ 0 5000 7000 899

2θ 5000 4000 11000 1101

3
θ 12000 5000 19000 1476

4
θ

18000 4000 29000 2854

5
θ 24000 5000 31000 670

As said above, additional SCPs scheme fits

systems which overhead time is determined

mainly by the time to compare processor’ states.

Therefore, the parameters is as following:

1, 10, 11s cpt t C= = = . Of course, for additional

CCPs scheme, we let 10, 1, 11s cpt t C= = = .

We carried out simulation experiments to

evaluate our multitask adaptive checkpointing

schemes, named as ADTSCPs_MUL and

ADTCCPs_MUL, with the Poisson-arrival (re-

ferred to as Poisson), the k-fault-tolerant (re-

ferred to as k-f-t) checkpointing schemes. Faults

are injected into system using a Poisson process

with various values for the arrival rateλ. The

experiment results are shown in Table 4 and

Table 5.

Table 4 Comparison between ADTSCPs_MUL with

other schemes

Probability of timely completion of

tasks, P

42 (10)λ −×

Poisson k-f-t ADTSCPs_MUL
0.5 0.4891 0.8841 0.9567

1 0.3811 0.5959 0.8342

2 0.1769 0.1842 0.4901

3 0.0423 0.0414 0.3050

4 0.0081 0.0079 0.1794

5 0.0008 0.0020 0.0980

6 0.0001 0.0003 0.0484

 2k=

Table 5 Comparison between ADTCCPs_MUL with

other schemes

Probability of timely completion of

tasks, P

42 (10)λ −×

Poisson k-f-t ADTCCPs_MUL
0.5 0.4951 0.8698 0.9558

1 0.3765 0.6055 0.8125

2 0.1698 0.1792 0.4629

3 0.0394 0.0405 0.2974

4 0.0071 0.0081 0.2023

5 0.0016 0.0009 0.1143

6 0.0001 0.0000 0.0389

 2k=

These results show that adaptive schemes

provide a higher probability of timely comple-

tion for multitask systems than the other two

schemes.

4 Conclusion
We develop adaptive checkpointing

schemes for a set of multiple tasks in real-time

systems with two processors. We use two types

of checkpoints (SCP and CCP) to increase the

likelihood of timely task completion in the

presence of faults. Separating the comparison

and store operations enables choosing the opti-

mal interval for each operation, without concern

about the other. Further, we have discussed

analytically the optimal numbers of checkpoints

that minimize the mean times. Based above, we

present the dynamically set the checkpoints in-

terval algorithm. Simulation results show that

adaptive schemes provide a higher probability

of timely completion for multitask systems than

the other two schemes.

References

[1] Ziv A, Bruck J. “Analysis of Checkpoint-

ing Schemes with Task Duplication”, IEEE

Transactions on Computers [J], 1998,

47(2):222-227

[2] Ziv A, Bruck J. Performance Optimization

of Checkpointing Schemes with Task Du-

plication [J] IEEE Transactions on Com-

puters, 1997, 46(2):1381-1386

[3] Kimura M, Yasui K, Nakagawa T, et al.

Optimal checkpointing interval of a com-

munication system with rollback recovery,

Mathematical and computer modeling,

2003, 38:1303-1311

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp650-655)

[4] Li Kai-Yuan, Yang Xiao-Zong. Improving

the performance of checkpointing scheme

with task duplication, ACTA ELEC-

TRONICA SINICA(in chinese), 2000,28

（5）：33-35

[5] Sayori N, Satoshi F, Naohiro I. Optimal

Checkpointing Intervals of Three Error

Detection Schemes by a Double Modular

Redundancy [J], Mathematical and Com-

puter Modelling, 2003,38:1357-1363

[6] Vaidya N H. A Case for two-level distrib-

uted recovery schemes, Proce. ACM SIG-

METRICS Conf. Measurement and Model-

ing of Computer Systems, 1995: 64-73

[7] Duda A. The effects of checkpointing on

program execution time, Information Proc-

essing Letters, 1983 (16):221-229

[8] Lee H, Shin H, Min S. Worst case timing

requirement of real-time tasks with time

redundancy, Processing Real-Time com-

puting systems and Applications, 1999:

410-414

[9] Osaki S. Applied stochastic system model-

ing, Springer-Verlag, 1992

[10] Ying Z, Crishnendu C. Energy-Aware

Adaptive Checkpointing in Embedded

Real-Time Systems[C], Proc. of the design,

automation and test in Europe conference

and exhibition (DATE’03), 2003

[11] Ying Z, Krishnendu C. Dynamic Adapta-

tion for Fault Tolerance and Power Man-

agement in Embedded Real-Time Systems,

ACM Transactions on Embedded Comput-

ing Systems, 2004,3(2):336-360

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp650-655)

