
 

Adaptive Checkpointing Schemes for Fault Tolerance in 

 Real-Time Systems with Task Duplication 
 

Zhongwen Li
1 ,2

,  Hong Chen
1
 

 
1
Information Science and Technology College, 

Xiamen University, 

Xiamen 361005, China 

 
2
Zhongshan Institute of UESTC, 

Zhongshan, 528402, China 

 
Abstract: Dynamic adaptation techniques based on checkpointing is studied in this paper. Placing 

store-checkpoints and compare-checkpoints between CSCP (store-and-compare-checkpoint), we first 

present adaptive checkpointing schemes in which the checkpointing interval for a task is dynamically 

adjusted on line. Introducing the overheads of comparison and storage, the average execution times to 

complete a task for proposed schemes are obtained, using renewal equations. Further, we have dis-

cussed analytically the optimal numbers of checkpoints that minimize the average execution times. 

We then extend proposed schemes to a set of multiple tasks in real-time systems. Simulation results 

show that compared to previous method, the proposed approach significantly increases the likelihood 

of timely task completion.  
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1 Introduction 
Fault tolerance is typically achieved in 

real-time systems through checkpointing and 

task duplication. Checkpointing enables reduc-

ing the time to recover from a fault by saving 

intermediate states of the task in a secure stor-

age. Generally speaking, each checkpoint serves 

two purposes. The first is to save the processor 

state and to reduce the fault-recovery time by 

supplying an intermediate correct state, thus 

avoiding rollback to the beginning of the task. 

The second purpose is fault-detection, which is 

achieved by executing and comparing the proc-

essors’ states at each checkpoint in task duplica-

tion systems. In task duplication systems, such 

as DMR (Double Modular Redundancy), 

TMR-F, DMR-F-1 and RFCS
[1]
, the task is exe-

cuted on more than one processor and the states 

of the processors are compared to detect faults. 

Several papers describe schemes that combine 

checkpointing and task duplication
[2-6]

. When 

there is a big difference between the time to 

store the processors’ states and the time to 

compare these states, the overhead time is de-

termined mainly by the operation that takes a 

longer time. In order to avoided unnecessary 

overhead, some people have researched SCP 

and CCP checkpoint
[2,4,6]

. 

In this paper, we present adaptive schemes to 

dynamically adjust checkpointing interval to 

reduce task execution time for single and multi-

ple real-time tasks. These schemes are also de-

signed to tolerate up to k fault occurrences. The 

proposed adaptive checkpointing is consisted of 

two schemes in which we place SCP or CCP 

between consecutive CSCPs, respectively. For 

the sake of simplicity, we use a double modular 

redundancy (DMR) in which a task is executed 

on two processors.  

we assume that the time for a failure to occur 
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is exponentially distributed with constant failure 

rate λ . Some notation used in our paper is as 

following: 

ts: the time to store the states of processors. 

tcp: the time to compare their states. 

tr: the time to roll back the processors to a 

consistent state. 

tR : remaining execution time ( not including 

checkpointing and recovery). 

dR : time left before the deadline.  

fR : an upper bound on the remaining number 

of faults that must be tolerated. 

 

2 Adaptive checkpointing scheme for 

single real-time task 
We assume that shared memory is fault 

tolerant and that operation system kernel has 

adequate redundancy and uses robust data 

structures to enable fault containment. Assume 

task τ  has a period T , a deadline D , a 

worst-case computation time N when there are 

no fault in the system. An upper boundary k 

represents the number of fault occurrences that 

have to be tolerated. C is the overhead of a 

checkpoint. Faults arrive as a Poisson process 

with parameter λ , the average execution time 

for the task is minimum, if a constant 

checkpoint interval of 2 /C λ is used
 [7]
. We refer 

to this as the Poisson-arrival approach. If the 

Poisson-arrival scheme is used, the effective 

task execution time in the absence of faults must 

be less than the deadline D. Assume the 

fault-free execution time for a task is N, the 

worst-case execution time for up to k faults is 

minimum, if the constant checkpoint interval is 

set to kNC /  
[8]
. This is the k-fault-tolerant ap-

proach. In addition, we assume that task τ is 
divided equally into n intervals of length N

T
n

 =   
, 

and at the end of each interval, CSCP is always 

placed. 

 

2.1 SCPs and CCPs 
Each CSCP interval is divided equally into 

m intervals of length 





=
m

T
T
1

. The SCP are 

placed between the CSCPs, the states of two 

processors are stored at iT1 and jT (i=1,2,…, 

m-1). If two states do not get an agreement at 

time jT, then, we need to find the most recent 

SCP with identical states and roll back to it. 

Two processors are rolled back to (i-1)T1 be-

cause some errors have occurred during ((i-1)T1, 

iT1), and repeat the execution from (i-1)T1. The 

average execution time R1(m) for a CSCP inter-

val ((j-1)T, jT) is given by a renewal-equation
[5, 

9]
: 

Therefore, the average execution time of a 

task  RSCP(n)=nR1(m). 

Replace
1

/m T T= , we have 

121
1 1

1 1 1 1

( )
( ) [( ) ]( 1)......(1)

2

T

s cp s cp

T TT T T
R T T t t T t t e

T T T T

λ+
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    If
1 0T +→ , then R1(T1)=+∞ . Let T1=T, we 

have 2

1 1( ) ( )
T

s cpR T T t t e λ= + + . Thus, there exists a 

finite ( ]jTTjT ,)1(
~
1 −∈ which minimizes R1(T1). 

Differentiating equation (1) with respect to T1 

and setting it equal to zero, we get
1T
� . Procedure 

num_SCP(T) for calculating m� which mini-

mize )~(1 mR is described in Figure 1. 

The adaptive checkpointing with SCPs, 

adapchp-SCP (D,E,C,k, λ ), is described in Fig-

ure 2. A check is performed to see if the task has 

been completed in line 4, and line 5 checks for 

the deadline constraint. The length of SCP and 

CSCP interval is set in line 6 and line 7, respec-

tively. In line 9, a check is performed to see if 

fault is detected. If there is no fault, then con-

tinue to run task, otherwise, roll back to previ-

ous SCP with identical states and continues 

execution, which are described from line 12 to 

line 16. In line 2 and 14, we use procedure in-

terval (Rd, Rt, C, Rf, λ ) 
[10] 

to calculate the 

checkpoint interval. 

Now we place CCP between the CSCPs. 
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Fig. 1  Procedure for calculating the m�  

Procedure num_SCP(T){ 
1.  Find 1

~
T  which minimizes R1(m); 

2.  if ( 1

~
T <T) { 

3.    m=  1~/TT ; 

4.   if (R1(m)≤R1(m+1)) then 
5.      ;~ mm =  
6.      else ;1~ += mm  
7.  } else ;1~ =m  
8. return ;~m } 
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The states of the two processors are compared 

at iT2 and jT (i=1,2,…, m-1). If two states do not 

reach to an agreement at iT2 and jT, that means 

some errors have occurred during this interval, 

the two processors will be rolled back to (j-1)T. 

The average execution time R2(m) for an inter-

val ((j-1)T, jT) is given by a renewal-equation: 

    Therefore, the average execution time 

RCCP(n)=nR2(m). Replacing 2/m T T= , we 

have: 

0 2 0

0 2

22 2

2 2 2
( ) ( 1) ......(2)

1

cpT T

s T

T t
R T t e e

e

λ λ
λ−

+
= + −

−
 

If
2 0T +→ , then R2(T2)= +∞ . If T2=T, 

then 2

2 2( ) ( ) T

s cpR T T t t e λ= + + . Therefore, there 

exists a finite ( ]jTTjT ,)1(
~
2 −∈ , which minimizes 

R2(T2). Differentiating equation (2) with respect 

to T2 and setting it to zero, we can get 2T
� . We 

can use the similar approach described in figure 

1 to calculatem� which minimize
2 ( )R m� . In figure 

2, let “Insert CCP with interval length itv;” re-

place line 6, let “if (no error has been detected 

at CCP/CSCP);” replace line 9, and let “Roll-

back to last CSCP;”  replace line 12. Then, we 

obtain the adaptive checkpointing with CCP, 

namely adapchp-CCP (D,N,C,k,λ) procedure. 

 

2.2 Simulation results 
   We carried out a set of simulation experi-

ments to evaluate our adaptive checkpointing 

schemes (referred to as ADTSCPs and 

ADTCCPs) and to compare it with the Pois-

son-arrival (referred to as Poisson), the 

k-fault-tolerant (referred to as k-f-t) checkpoint-

ing schemes and ADT
[10]

. Faults are injected 

into system using a Poisson process with vari-

ous values for the arrival rateλ. Due to the 

stochastic nature of the fault arrival process, the 

experiment is repeated 10,000 times for the 

same task and the results are averaged over 

these runs. We are interested here in the prob-

ability P that the task completes on time, either 

on or before the stipulated deadline. As in [10], 

we use the term task utilization U to refer to the 

ratio N/D. In order to compared with results of 

[10], we let tr=0.  

 

2.2.1 SCPs 

As said above, additional SCPs scheme fits 

systems which overhead time is determined 

mainly by the time to compare processor’ states. 

Therefore, the parameters is as following: 

D=10000, ts=1, tcp=10, C=11. 
 

Table 1 Comparison between ADTSCPs with other 

schemes 
Probability of timely completion of tasks, P U )10(2 2−×λ

 Poisson  k-f-t ADT ADTSCPs 

0.13 0.704 0.701 0.716 0.9649 0.76 

0.15 0.532 0.512 0.536 0.9319 

0.13 0.468 0.468 0.470 0.8818 0.78 

0.15 0.385 0.280 0.409 0.8065 

(a) k=5 

Probability of timely completion of tasks, P U )10(2 4−×λ

 Poisson  k-f-t ADT ADTSCPs 

1.0 0.7560 0.7592 0.7575 0.7715 0.92 

2.0 0.4387 0.4412 0.4780 0.5310 

1.0 0.3843 0.3852 0.3785 0.3942 0.95 

2.0 0.1449 0.1449 0.2777 0.2797 

(b) k=1 

 

2.2.2 CCPs 

Additional CCPs scheme fits systems 

which overhead time is determined mainly by 

the time to store processor’ states. Therefore, 

the parameters is as following: D=10000, ts=10, 

tcp=1, C=11. 
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Fig. 2  Adaptive checkpointing with SCPs 

Procedure adapchp-SCP (D, N, C, k, λ ){ 
1. Rt=N; Rd=D; Rf=k; 
2. Itv=interval(Rd, Rt, C, Rf, λ ); 
3. m=num_SCP(Itv);  mItvitv /= ; 
4. while (Rt>0) do { 
5.   if (Rt> Rd) break with task failure; 
6.   Insert SCP with interval length itv; 
7.   Insert CSCP with interval length Itv; 
8.   Update Rt, Rd; 
9.   if (no error has been detected at CSCP) 
10.    Resume execution; 
11. else{ 
12.    Rollback to the most recent SCP with identi-

cal states; 
13.    Rf= Rf-1; 
14.    Itv=interval(Rd, Rt, C, Rf, λ ); 
15.    m=num_SCP(Itv);  mItvitv /= ; 
16.    Resume execution;}} 
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Table 2. Comparison between ADTCCPs with other 

schemes 
Probability of timely completion of tasks, P U )10(2 2−×λ

 Poisson k-f-t ADT ADTCCPs 

0.13 0.7071 0.7027 0.7191 0.9693 0.76 

0.15 0.5298 0.5068 0.5337 0.9306 

0.13 0.4623 0.4623 0.4671 0.8938 0.78 

0.15 0.3843 0.2780 0.4062 0.8058 

(a) k=5 

Probability of timely completion of tasks, P U )10(2 4−×λ

 Poisson  k-f-t ADT ADTCCPs 

1.0 0.7528 0.7579 0.7581 0.7650 0.92 

2.0 0.4497 0.4490 0.4849 0.5416 

1.0 0.3941 0.4007 0.3887 0.4030 0.95 

2.0 0.1544 0.1567 0.2919 0.2934 

(b) k=1 

The performances of the four schemes, 

measured by the probability of timely comple-

tion of the task, are comparable. For 001.02 >λ  

and U>0.7(high fault arrival rate and relatively 

high task utilization), ADTSCPs and ADTCCPs 

schemes clearly outperforms the other three 

schemes, the results are shown in table 1(a), and 

table 2(a). For 001.02 <λ and U>0.9 (low fault 

arrival rate and relatively high task utilization), 

we can get the same result in the case of 

001.02 >λ  and U>0.7, see table 1(b) and table 

2(b).  

 

3 Adaptive checkpointing scheme for 

multiple real-time tasks 
3.1 Extensions of adaptive checkpointing to 

multiple tasks 
Now, we extent adaptive checkpointing 

procedures, namely adapchp_SCP(D,E,C,k, λ ) 

and adapchp_CCP(D,E,C,k, λ ), to a set of mul-

tiple real-time tasks. We assume that there is a 

setΨ={ 1τ ， 2τ ，…， nτ } of n tasks that must be 

scheduled by the system in the absence of errors. 

Any task iτ in Ψ has a period 
iT , a deadline 

iD , a computation time
iE under fault-free con-

ditions (
iE ≤ iD ≤ iT ), and a priority level ip .  

For each hyper-period, we can obtained a 

sequence of m instance Ф={
1θ ,

2θ ,…, 
mθ }. 

In addition, any instance
iθ ( mi ≤≤1 ) has a 

starting time ia , an execution time ib , and a 

deadline ic . According to EDF, we 

have mccc ≤≤≤ �21 . Now, we develop a 

checkpointing scheme that inserts checkpoints 

to each instance by exploiting the slacks in a 

hyper-period. It must determine an appropriate 

value for the deadline that can be provided as an 

input parameter to the adapchp_SCP(D,E,C,k, λ ) 
and adapchp_CCP(D,E,C,k, λ ) procedures. Of 
course, in order to meet the timing constraint 

and ensure time redundancy can be exploited 

for fault-tolerance, this deadline must be no 

greater than the exact instance deadline and no 

less than the instance execution time. In order to 

compute this parameter, we employ the method 

of [11], which incorporates a preprocessing step 

immediately after the offline EDF scheduling is 

carried out and the resulting values are then 

provided for subsequent online adaptive check-

pointing procedure. We let ih denote the slack 

time for instance
iθ ( mi ≤≤1 ). Like paper [11], 

we add a pseudo instance
0θ , which has pa-

rameters 00000 ==== hcba . According to the 

deadline constraints, we have 

1 1 1 1max{ , }i i i i i i ia b h a b h c+ + + ++ + + + ≤ ，

where0 1i m≤ ≤ − . To ensure each job has the 

minimum time-redundancy for fault-tolerance, 

paper [11] require the slack of each job to be 

greater than a constant threshold value Q , 

which is defined as a given number of check-

points. Then we have Qh i ≥ , where mi ≤≤1  

In this paper, we us Matlab to calculate ih that 

maximize the sum of all slacks 
1

m

ii
h

=∑ . 

Let vi represent checkpointing deadline, 

which is the deadline parameter provided to  

adapchp_SCP(D,E,C,k, λ ) and 

adapchp_CCP(D,E,C,k, λ ) procedures. Assume 

the actual starting time of 
iθ  is ia

′，and the 

actual execution time is 
ib
′ . Than the actual 

starting time 1ia+
′ of the next instance

1+iθ  can 

be calculated as 
1 1

max{ , }
i i i i
a a a b+ +

′ ′ ′= + , the ac-

tual slack time 
1i

h +
′ of 

1+iθ is adjusted as 

1 1 1 1( )i i i ih h a a+ + + +
′ ′= − − , and the actual checkpoint-

ing deadline 1iv +
′  is adjusted as  

1

1

1 1

  1 0

  1 0.

i

i

i i

b if hi
v

b h if hi

+
+

+ +

+ <′ = 
+ + ≥

 
[11]

. 

 

3.2 Simulation results 
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   Like paper [11], we consider two tasksΨ

={ 1τ ， 2τ }, 1τ =(5000, 7000,12000) and 

2τ =(4000, 11000, 18000). After offline sched-

uling is carried out using EDF, we obtain the 

sequence of instances of tasks. Note that
1θ , 

3θ , 

and
5θ are instances of 1τ , 

2θ and
4θ are in-

stances of 2τ . Here we assume that the CSCP 

checkpoint cost is 11, and we require that at 

least 20 CSCP checkpoints are inserted for each 

slack. Then Q equals 220. The slack values 

generated by Matlab are 

1 2 3 4 5
899, 1101, 1476, 2854, 670h h h h h= = = = = . 

The parameters of instances are listed in Table 

3. 

 
Table 3  Instances parameters of the two-task exam-

ple 

 
ia  

ib  
ic  

ih  

1θ  0 5000 7000 899 

2θ  5000 4000 11000 1101 

3
θ  12000 5000 19000 1476 

4
θ  

18000 4000 29000 2854 

5
θ  24000 5000 31000 670 

 

As said above, additional SCPs scheme fits 

systems which overhead time is determined 

mainly by the time to compare processor’ states. 

Therefore, the parameters is as following: 

1, 10, 11s cpt t C= = = . Of course, for additional 

CCPs scheme, we let 10, 1, 11s cpt t C= = = . 

We carried out simulation experiments to 

evaluate our multitask adaptive checkpointing 

schemes, named as ADTSCPs_MUL and 

ADTCCPs_MUL, with the Poisson-arrival (re-

ferred to as Poisson), the k-fault-tolerant (re-

ferred to as k-f-t) checkpointing schemes. Faults 

are injected into system using a Poisson process 

with various values for the arrival rateλ. The 

experiment results are shown in Table 4 and 

Table 5.  
 

Table 4 Comparison between ADTSCPs_MUL with 

other schemes 

Probability of timely completion of 

tasks, P 

42 ( 10 )λ −×  

Poisson k-f-t ADTSCPs_MUL 
0.5 0.4891 0.8841 0.9567 

1 0.3811 0.5959 0.8342 

2 0.1769 0.1842 0.4901 

3 0.0423 0.0414 0.3050 

4 0.0081 0.0079 0.1794 

5 0.0008 0.0020 0.0980 

6 0.0001 0.0003 0.0484 

     2k=  

 

Table 5 Comparison between ADTCCPs_MUL with 

other schemes 

Probability of timely completion of 

tasks, P 

42 ( 10 )λ −×  

Poisson k-f-t ADTCCPs_MUL 
0.5 0.4951 0.8698 0.9558 

1 0.3765 0.6055 0.8125 

2 0.1698 0.1792 0.4629 

3 0.0394 0.0405 0.2974 

4 0.0071 0.0081 0.2023 

5 0.0016 0.0009 0.1143 

6 0.0001 0.0000 0.0389 

     2k=  

These results show that adaptive schemes 

provide a higher probability of timely comple-

tion for multitask systems than the other two 

schemes. 

 

4 Conclusion 
We develop adaptive checkpointing 

schemes for a set of multiple tasks in real-time 

systems with two processors. We use two types 

of checkpoints (SCP and CCP) to increase the 

likelihood of timely task completion in the 

presence of faults. Separating the comparison 

and store operations enables choosing the opti-

mal interval for each operation, without concern 

about the other. Further, we have discussed 

analytically the optimal numbers of checkpoints 

that minimize the mean times. Based above, we 

present the dynamically set the checkpoints in-

terval algorithm. Simulation results show that 

adaptive schemes provide a higher probability 

of timely completion for multitask systems than 

the other two schemes. 
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