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Introduction.

It is well-known that a lot of problems in optimization and optimal control
involve marginal functions and their subdifferentials since the sensitivity of these
problems can be studied with the help of the behavior of the subdifferentials of
some associated marginal functions. Generally the infimum defining the marginal
function is required to be attained near the point of interest.
This paper is devoted to study how this condition can be removed. More general
cases using more technical methods will be considered in a forthcoming second paper
[1]. Here we will deal with locally Lipschitz marginal functions of the form

m(x) := inf{g(y) : y ∈ G(x)}

where g is a real-valued function from a Banach space X into IR and G is a mul-
tivalued mapping from X into a Banach space Y . The above infimum will not be
required to be attained.

Note that, with appropriate modifications of our proofs, all the results
in the paper have their analog ones with the limiting Fréchet subdifferentials (see
Mordukhovich and Shao [14] for the definition) whenever the spaces X and Y are
assumed to be Asplund.
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1. Preliminaries

In all this paper X, IBX and F(X) denote respectively a Banach space, the
closed unit ball of X and the collection of all finite dimensional vector subspaces of
X.

Let f : X −→ IR
⋃{−∞,+∞} be a function which is lower semicontinuous

near x̄ ∈ X with | f(x̄) |<∞. For each subset S ⊂ X, fS will be the function given
by fS(x) = f(x) if x ∈ S and fS(x) = +∞ otherwise. Following Ioffe [9] the lower
Dini ε -subdifferential (for ε ≥ 0) of f at x is defined by ∂−ε f(x) = ∅ if | f(x) |= +∞
and otherwise by:

∂−ε f(x) := {x∗ ∈ X∗ :< x∗, v >≤ d−f(x; v) + ε‖ v ‖,∀v ∈ X}

where
d−f(x; v) := lim inf

u→v,t→0+
t−1[f(x+ tu)− f(x)]

and the approximate subdifferential of f at x̄ is defined by

∂Af(x̄) :=
⋂

L∈F(X)

lim sup
x→f x̄

∂−fx+L(x) (1.1)

where ∂−f(x) is ∂−ε f(x) for ε = 0 . Here, x →f x̄ means x → x̄ and f(x) → f(x̄)
and for a multivalued mapping M from X into X∗, x∗ ∈ lim supx→x̄M(x) means
that there exist nets (xi, x

∗
i ) ∈ GrM converging to (x̄, x∗) with respect to the

‖ ‖ ×w∗−topology.
One also has (see Ioffe [9])

∂Af(x̄) =
⋂

L∈F(X)

lim sup
x→f x̄,ε→0+

∂−ε fx+L(x) (1.2)

In the next proposition we are going to characterize the approximate subdif-
ferential in terms of limits of some Fréchet subgradients. Recall (see Ioffe [10] and

Mordukhovich and Shao [14]) that the Fréchet ε−subgradient set ∂Fε (x) of f at x
is the set of all x∗ ∈ X∗ for which there exists somme r > 0 such that for every
u ∈ x+ rIBX

< x∗, u− x > +f(x) ≤ f(u) + ε ‖ u− x ‖ .
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If ε = 0, one denotes ∂Ff(x).

It is worth noting that the approximate subdifferential and normal cone used
in the paper are infinite-dimensional extensions of the Mordukhovich subdifferential
introduced in the paper [12], and the sequential extension of these constructions
(called sometimes limiting Frechet normal cone and subdifferential) were first devel-
oped in the paper [13]. The other line of infinite-dimensional extensions of [12] was
developed by Ioffe in [8], [9] and [10] .

1.1 Proposition. Let f : X → IR be a lower semicontinuous function with
| f(x̄) |<∞. Then
i)

∂Af(x̄) =
⋂

L∈F(X)

lim sup
x→f x̄,ε→0+

∂Fε fx+L(x)

ii) and if f is k-Lipschitz near x̄, then

∂Af(x̄) =
⋂

L∈F(X)

lim sup
x→x̄,ε→0+

[∂Fε fx+L(x) ∩ (1 + k)IBX∗ ]

2. Subdifferentials of Lipschitz marginal functions.

In this section, we consider the marginal function

m(x) := inf{g(y) : y ∈ G(x)}

where g : Y 7→ IR is a real valued function and G is a multivalued mapping from X
into a Banach space Y . We will denote the graph of G by GrG := {(x, y) ∈ X×Y :
y ∈ G(x)}. It is known that a lot of apparently different types of marginal functions
can be reduced to this form. In Hiriart-Urruty [5], Thibault [17] and references
therein (for examples) one can find some reductions and several applications to the
study of optimization problems.

The subdifferential that will be considered below is the (Ioffe) approximate
subdifferential recalled in the first section. One of the important properties of this
subdifferential appears in the fact that each of its elements is some limit of some
Fréchet subgradients. The important role that proximal or Fréchet subgradients
can play in the study of optimal value functions has been noticed for the first time
(to the best of our knowledge) by Rockafellar (see his papers on the subject in the
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references of [15]).

Recall (see Ioffe [9] where the term ”nucleus” is added) that the approx-
imate coderivative D∗AG(x̄, ȳ), for ȳ ∈ G(x̄), is the multivalued mapping from Y ∗

into X∗ defined by

x∗ ∈ D∗AG(x̄, ȳ)(y∗)⇔ (x∗,−y∗) ∈ IR+∂Ad(.;GrG)(x̄, ȳ).

We will write ∂Ad(x̄, ȳ;GrG) in place of ∂Ad(.;GrG)(x̄, ȳ). Here d(., S) denotes the
distance function to a set S.

Note that, for S ⊂ X and S3r := S ∩ (x̄+ 3rIBX) with r > 0 and x̄ ∈ S it
is not difficult to see that for x ∈ x̄+ rIBX

d(x, S) = d(x, S3r)

and hence
∂Ad(x̄, S) = ∂Ad(x̄, S3r). (2.1)

The following theorems are the main results of the paper.
2.1 Theorem. Suppose that g is locally Lipschitz and m is finite and locally
γ−Lipschitz near x̄. Then there exist nets (xi, yi) → (x̄, ȳ) with yi ∈ G(xi) and
g(yi) → m(x̄), εi ↓ 0, y∗i ∈ ∂Ag(yi) + εiIBY ∗ , x

∗
i ∈ D∗AG(xi, yi)(y

∗
i ) such that with

respect to the weak-star topology

x∗ = lim x∗i .

2.2 Theorem. Suppose that m is finite and γ−Lipschitz near x̄ and there exists
some neighborhood V of x̄ such that g is β−Lipschits over some neighborhood of
G(V ). Then there exists λ > 0 such that

∂Am(x̄) ⊂ {x∗ ∈ X∗ : ∃y∗ ∈ lim sup
g(y)→m(x̄)

∂Ag(y) with

(x∗,−y∗) ∈ λ lim sup
x→x̄,g(y)→m(x̄),y∈G(x)

∂Ad(x, y,GrG)}

and hence

∂Am(x̄) ⊂
⋃
{ lim sup
x→x̄,g(y)→m(x̄),y∈G(x)

D∗AG(x̄, ȳ)(y∗) : y∗ ∈ lim sup
g(y)→m(x̄)

∂Ag(y)}.
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2.3 Corollary. Suppose that there exists some neighborhood V of x̄ such that

g is β-Lipschitz over some neighborhood of G(V ) and G is α-Lipschitz over V , that
is for all x1, x2 in V

G(x1) ⊂ G(x2) + α ‖ x1 − x2 ‖ IBX .

Then, the conclusions of theorem 2.2 hold.
Before stating the next corollary, we recall that G is pseudo-Lipschitz at

(x̄, ȳ) ∈ GrG if (see Aubin [2]) there exist α > 0, r > 0, s > 0 such that for any
x1, x2 in a neighborhood of x̄

G(x1) ∩ (ȳ + sIBY ) ⊂ G(x2) + r ‖ x1 − x2 ‖ IBX . (2.10)

Rockafellar [16] showed that G is pseudo-Lipschitz at (x̄, ȳ) ∈ GrG iff d(., G(.)) is
Lipschitz over a neighborhood of (x̄, ȳ).
We can now state this second corollary which is in the line of some results in Thibault
[17] and Jourani and Thibault [11].

2.4 Corollary. Let G be a multivalued mapping between X and Y which is

pseudo-Lipschitz at (x̄, ȳ) ∈ GrG. Then there exists some λ > 0 such that

∂Ad(ȳ, G(.))(x̄) ⊂
⋃

y∗∈IBY ∗
{x∗ ∈ X∗ : (x∗,−y∗) ∈ λ∂Ad(.;GrG)(x̄, ȳ)}.
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