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Abstract: - Unified unsymmetrical and symmetrical iterative solvers for handling multiple right-hand-side 
vectors are examined in this work. Efficient computer implementation strategies (to reduce computational time 
and in-core memory requirements) are proposed. In-core, out-of-core, linear, multiple right hand side (RHS) 
vectors, non-linear, symmetrical, and unsymmetrical capabilities of the developed software are demonstrated 
by solving variety of problems selected form different engineering disciplines. Results indicate that the 
developed algorithm and software is reliable and efficient. 
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1   Introduction 
 

For large-scale engineering and science 
problems encountered in practical applications, 
finite element analysis (FEA) procedures have been 
widely accepted by the engineering communities as 
the efficient tool for obtaining the solution. The 
most time consuming (and computer memory 
requirement) part of the FEA procedures is to solve 
the large, discretized system of linear equations. 
Recent research works seem to indicate that FEA 
procedures, embedded inside the framework of 
Domain Decomposition (DD) formulation, where 
mixed "direct, sparse", and "iterative" algorithms are 
used, can exploit the computational efficiencies 
offered by modern parallel processing computer 
hardware. In this research work, the Lingen's 
unsymmetrical iterative algorithm [1] for efficient 
handling multiple right-hand-side (RHS) vectors is 
re-examined, and modified, so that both 
"unsymmetrical and symmetrical” system of linear 
equations [2, 6] can be handled in a sparse matrix 
environments. To validate the modified algorithms, 
and to evaluate the computational efficiency, 
applications in Structural, and Acoustic disciplines 
are discussed in this paper. 
 
 

2 Generalized Conjugate Residual 
(GCR) Iterative Algorithms with 
Successive Right Hand Side Vectors  

To keep the discussion more general, our objective 
here is to solve the system of “unsymmetrical,” 
linear equations, which can be expressed in the 
matrix notations as: 

[ ]A x b=
rr

   (1) 
where [A] is a given N×N unsymmetrical matrix, 
and b

r
 is a given, single right-hand-side vector. 

System of “symmetrical” linear equations can be 
treated as a special case of “unsymmetrical” 
equations. However, more computational efficiency 
can be realized if specific algorithms (such as the 
Conjugate Gradient algorithms) which exploit the 
symmetrical property are used. Successive right-
hand-side vectors will be discussed near the end of 
this section. 
 Solving Eq. (1) for the unknown vector xr  is 
equivalent to either of the following optimization 
problem: 

T T

Nx R

1M in im ize x A x x b1 2
∈

≡ −ψ       (2) 

or 
T

Nx R

M inimize (A x b) * (A x b)2
∈

≡ − −ψ
r rr r    (3) 

Equation (2) is preferred for the case matrix [A] is 
“symmetrical”, while Eq. (3) is suggested if matrix 
[A] is “unsymmetrical”. 
 
The minimization problem, described by Eq. (2) or 
Eq. (3), can be iteratively solved by the following 
step-by-step procedures as indicated in Table 1. 
 

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp121-127)



Table 1 Step-by-Step Iterative Optimization 
Procedures 

Step 0 Initial guessed vector: 
(0)x x ; and set iterarion count i 0= =

uuurr
         (4) 

 
Step 1 Set i=i+1 at the current design point, find the 
“search direction” to travel, s(i-1) ? 
 
Step 2 Find the step-size, α(how far should we 
travel along a given direction s(i-1) )? 
 
Step 3 Find the updated, improved design, x(i) ? 
  (i) (i 1) (i 1)x x s− −= + α   (5) 

Step 4 Convergence test 
 
 Convergence is achieved if : 

T
1 Tolerance∇ψ ≤             (6) 

 
          T

2 Tolerance∇ψ ≤         

and / or 
(i) (i 1)x x Tolerance−− ≤             (7) 

If convergence is achieved (or, iteration # i=max. # of 
iterations allowed) then stop the process. 
 Else 
 Return to step1 
 End if 

 
In Table 1, the 2 most important steps are to find “the 
search direction” s(i-1) to travel from the current 
design point (see Step 1), and to find “the step size” α 
(see Step 2). 
 
2.1. How to find the “Step Size”, α, along a Given 
Direction 

rs  ?? 

Assuming the search direction (i)s
uuur

 has already been 
found, then the new, improved design point can be 
computed as (see Step 3 of Table 1): 

(i 1) (i) (i)x x s+ = + α                     (8) 
Thus, Eqs. (2 – 3) become minimization problems 
with only 1 variable (=α), as following: 

( ) ( ) ( )T Ti i i i i i
1 1 1 1

1Min. x s A x s x s b
2

ψ = +α +α − +α     (9) 

or 

( ) ( )Ti i i i
2 2 2Min. A x s b * A x s b⎡ ⎤ ⎡ ⎤ψ = +α − +α −⎣ ⎦ ⎣ ⎦

        (10) 

In order to minimize the function values ψ1 (or ψ2), 
one needs to satisfy the following requirements: 

1

1

d
0

d
ψ

=
α

   (11) 

or 
2

2

d
0

d
ψ

=
α

   (12) 

and 

( ) ( )
( )

Ti T i

2 Ti T i

s A r

s A A s

−
α =         (13) 

 
2.2. How to find the “Search Direction,” si? 
 
The initial direction, s0, is usually selected as the 
initial residual: 

0 0 0s r (A x b)≡ − = − −                    (14) 
The reason for the above selection of the initial 
search direction was because Eq. (14) represents the 
gradient ∇ψ1(x0), or “steepest descent direction,” of 
the objective ψ1, defined in Eq.(2). 

The step size is selected such that 
 

i 1 i 1 i
1 1 1 1

1 1 1

d (x ) d (x s ) d dx0 *
d d dx d

+ +ψ ψ + α ψ
= = =

α α α
 (15) 

i 1 i
10 (x ) *s+= ∇ψ   (16) 

or 
i 1 i 1 i

i2 2 2 2

2 2 2

d (x ) d (x s ) d dx0 * s
d d dx d

+ + ⎛ ⎞ψ ψ +α ψ
= = = =⎜ ⎟α α α⎝ ⎠

(17) 

The above equation becomes: 

( ) ( )Ti T i i
2s A * A x s b 0⎡ ⎤+ α − =⎣ ⎦    (18) 

or 

( ) ( )Ti T i 1s A * A x b 0+⎡ ⎤− =⎣ ⎦      (19) 

( )Ti T i 1s A * r 0+⎡ ⎤ =⎣ ⎦   (20) 

Since Eq. (20) represents the “scalar quantity,” 
hence it can also be presented in its “transposed” 
form, as following: 

Ti 1 ir * A s 0+⎡ ⎤ =⎣ ⎦       (21) 

Comparing Eq. (21) with Eq. (17), one concludes: 
Ti 12

2 r * A
x

+∂ψ ⎡ ⎤∇ψ ≡ ≡ ⎣ ⎦∂
        (22) 

Thus, Eq.(21) can also be presented as: 
i 1 i

2 (x ) *s 0+∇ψ =   (23) 
One can built a set of “A conjugate” vectors (=s0.s1.   
.s 0 1 i i 1( s ,s , ,s ,s )+= L  by applying the Gram-
Schmidt procedures to the (new) residual vector: 
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i 1 i 1r̂ A x b 0+ += − =   (24) 
for obtaining the search direction 

i
i 1 i 1 k

k
k 0

ˆ ˆ ˆs r β s+ +

=

= +∑   (25) 

where 

( )
i 1 k

k Tk k

ˆ ˆr A sβ
ˆ ˆs A s

+−
=   (26) 

and the following property of “A conjugate” vectors 
will be satisfied: 

( )Ti 1 kˆ ˆs A s 0 ; k 0,1,2, , i+ = = L  (27) 

Polak-Rebiere Algorithm for βі becomes: 

( )
( )

Ti 1 i 1

i Ti i

ˆ ˆr *(r )

ˆ ˆr *(r )

+ +

β =  =   Fletcher-Reeves Algorithms (28) 

If [A] is an “unsymmetrical” matrix, then Reference 
[1] suggest to use “[AT A] conjugate” vectors as: 

i
i 1 i 1 k

k
k 0

ˆ ˆ ˆs r β s+ +

=

= + ∑      (29) 

where 

( ) ( )
( ) ( )

Ti 1 k

k Tk T k

ˆ ˆA r A s
β

ˆ ˆs A A s

+−
=       (30) 

with the following “Conjugate like” property: 

( ) ( )Ti 1 kˆ ˆA s A s 0+ =        (31) 
 
2.3. The Generalized Conjugate Residual 
(GCR) algorithm: 
 
Based upon the discussions in previous sections, the 
Generalized Conjugate Residual (GCR) algorithms 
can be described in the following step-by-step 
procedures 

Table 2 GCR Step-by-step Algorithms 
Step 1 Choose an initial guess for the solution, x0 
 Compute 0 0r b A x= −  
 
Step 2 Start optimization iteration, for j=1, 2... 
 Choose an initial search direction, jŝ  
 where j j 1ŝ r −=                                       (32) 
 Compute j jˆv̂ As=  ; (portion of Eq.13) 
 
Step 3 Generate a set of conjugate vectors ⋅j,  
 The Gram-Schmidt Process 
 

               for     k 1,2, j 1= −L  
 

 ( ) ( )Tj kv̂ vβ = ; see Eq.(30)    (33) 

 j j kˆ ˆv v v= −β                             (34) 
 ˆ ˆ ˆj j ks s sβ= + ; see Eq.(29)        (35) 
 End for 
 
Step 4 Normalize the vectors 

 ( ) ( )Tj jˆ ˆv vγ = ; complete the denominator 

 of Eq.(13)                                                (36) 

 
j

j v̂v =
γ

; “almost” completing Eq.(13) (37) 

 
j

j ŝs =
γ

                                      (38) 

Step 5 Compute the step size 

 ( ) ( )Tj 1 jr v−α = ;                      (39) 

Step 6 Compute the updated solution 
 j j 1 jx x s−= + α (See Eq.8) 
Step 7 Update the residual vector 
 j j 1 jr r v−= − α                          (40) 
Step 8 Convergence check? 

 If   
j

Tol
r

b
⎡ ⎤
⎢ ⎥ ≤ ε
⎢ ⎥⎣ ⎦

; Then                      (41) 

 Stop 
 Else 
 j j 1= +  
 Go to Step 2 
 
 
2.4 How to Efficiently Handle Successive Right-
Hand-Side Vectors? 
 
Assuming we have to solve for the following 
problems: 

i i[A]x b=
uurr

   (42) 
In Eq. (42), the right-hand-side (RHS) vectors are 
NOT all available at the same time, but that ib

uur
 

depends on i 1x −
r

. There are 2 objectives in this 
section, which will be discussed in subsequent 
paragraphs: 
# (1) Assuming the 1st solution 1xr , which 

corresponds to the 1st RHS vector 1b
uur

 has already 
been found in “n1” iterations. Here, we would like to 
utilize the first “n1” generated (and orthogonal) 
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vectors 
j 1,2, ,n1
i 1s =
=

L
to find “better initial guess” for 

the 2nd RHS solution vector i 2x =
r

. The new, 
improved algorithms will select the initial 

solution 0
i 2x =

r
, to minimize the errors defined by ψ1 

(see Eq.2), or ψ2 (see Eq.3) in the vector space 
spanned by the already existing (and expanding) 
“n1” conjugate vectors. In other words, one has: 

1
1 1

n0 1 2
1 1 n n n 1 11i 2x [s ,s , ,s ] *{P} [S ]*{P}× ×= ≡ =

r L   (43) 

Eq.(43) expresses that the initial guess vector 0
2xr  is 

a linear combinations of columns 1n1 2
1 1 1s ,s , ,sL . By 

minimizing (with respect to {P}) ψ2 (defined in 
Eq.3), one obtains: 

2
p 2( ) 0

P
∂ψ

∇ ψ ≡ =
∂

r
r          (44) 

which will lead to: 
T T
1 n n 2 n 1n n1

T Tn1 1
1 1

[s ] *[A ] *{b }
{P}

[s ][A ][A][s ]
× ××

×
=

r

    (45) 

For the “symmetrical” matrix case, one gets: 
1

p 1( ) 0
P

∂ψ
∇ ψ ≡ =

∂

r
r         (46) 

which will lead to: 
T
1 2
T
1 1

[s ]*{b }{P}
[s ][A][s ]

=
r

        (47) 

The step-by-step algorithms to generate “good” 

initial guess 0
2x

uur
 for the 2nd RHS vector can be given 

as shown in Table 3. 
 

Table 3 Step-by-step Algorithms to Generate 
“Good” Initial Guess for RHS Vectors 

0
2x 0=

uur r
                                        (48) 

0
2 2r b=

uur uur
                                      (49) 

1for k 1, 2, , n= L                              (50) 

( ) ( )T0 k
2 1P r v=                           (51) 

    0 0 k
2 2 1x x Ps= +     (52 also see Eq.43) 

Recalled: k k
1 1v As=  (see Eq.32, where k

1s  has 

already been normalized according to Eq.38). 
Furthermore, kept in mind that k

1v  and k
1s  vectors 

had already been generated and stored when the 1st-
RHS had been processed. 
Thus, Eq.(51) represents the implementation of 
Eq.(45), but corresponding  to “ONLY 1 column” of 

matrix [S1]. That’s why we used to have a “do loop 
index k” (see Eq.50) to completely execute Eq.(45) 
& Eq.(43). 

0 0 k
2 2 1r r P v= −                          (53) 

Eq.(53) can be derived as following : 
First, pre-multiplying both sides of Eq.(52) by (-A), 
one obtains (note :P=scalar, in Eq.51) : 
      0 0 k

2 2 1( A) x ( A) x P ( A)s− = − + −  
Then, adding (b2) to both sides of the above 
equation, one gets: 
 ( )0 0 k

2 2 2 2 1A x b A x b P As− + = − + −  

or 
                ( )0 0 k

2 2 1r r P As= −  

or, referring to Eq.(32), then the above Eq. becomes: 
                 ( )0 0 k

2 2 1r r P v= −  

which is the same as indicated in Eq.(53). 
 End for 
 
# (2) For successive RHS vectors, the “search 
vectors” sj (see Eq.35, in Table 2) need to be 
modified, so that these vectors sj will not only 
orthogonal amongst themselves (corresponding to 
the current 2nd RHS vector), but they also will 
orthogonal with the existing n1 vectors 
[corresponding to ALL “previous” RHS vector(s)]. 
Thus, the total number of (cumulative) conjugate 
vectors will be increased, and hence “faster 
convergence” in the GCR algorithm can be 
expected. Obviously, there will be a “trade-off” 
between “faster convergence rate” versus the 
“undesired” increase in computer memory 
requirement. In practical computer implementation, 
the user will specify how many “cumulative” 
vectors sj and vj that can be stored in RAM. Then, if 
these vectors sj and vj have already filled up the 
user’s specified incore memory available and 
convergence is still NOT YET achieved, one may 
have to “restart” the process (by starting with the 
new initial guess etc ...), or using the out of core 
strategies. In this work, out of core strategies are 
used. The amount of work and the amount of 
memory that is required are proportional to the total 
number of search vectors that have been generated. 
To make the extended GCR algorithm competitive 
with direct solution algorithms, it is essential to keep 
the total number of generated search vectors as 
small as possible. This can be achieved by 
preconditioning the system of equations (42). 
Another way to reduce the amount of work and the 
memory is to use the extended GCR algorithm in 
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combination with the Domain Decomposition (DD) 
approach [3-5]. 
 
3  Numerical Applications 
 
Example 1: Two dimensional Frame structure 
(small change at all locations for consecutive RHS 
vectors, but dimension of the problem is 
1200x1200). 
  The basic system has five nodes in 
horizontal and five nodes in vertical direction. The 
corresponding nodes are connected with vertical and 
horizontal members as shown in the Figure 1. Since 
2-D frame elements are used in this example, each 
node has three degree’s of freedom: two 
translational (Tx,Ty) and one rotational (θz), dof. 
This basic structure, therefore, has 75 degree’s of 
freedom. All the nodes in the bottom floor are fixed 
support (Dirichlet type) boundary conditions. 

   

   

   

   

 
Figure 1: A typical 2-D frame structure (5x5 grid 

points) 
The length of each element is 10 in., Young’s 
modulus is 2x109 Psi. Moment of inertia of the 
cross-section is 1x10-10 mm4 and the area of cross 
section is 1x10-3 mm2.  Multiple right hand sides or 
the several load cases are applied on the frame 
structure. 
  In this example, the size of the 2-D frame 
structure (see Figure 1) is increased to 400x400 grid 
points, in each of the x and y directions. This 
structure, therefore, has 1200 degrees of freedom. 
Three right hand sides are used in this example. The 
unified GCR proposed in the paper converges in 
{844,13,14} iterations, corresponding to the right 
hand side vectors {1,2,3}, respectively. The absolute 
error norms for the solutions are {8.908E-12, 
5.618E-12, 6.492E-12}, respectively. 
 
Example 2: Aero-acoustics Application (400 
degree of freedom, 2-D un-symmetric system) [5] 
  The developed algorithm will be exercised 
to study the propagation of acoustic pressure waves 

in a three-dimensional duct lined with sound 
absorbing materials (acoustic liners) as depicted in 
Figure 2. 

 
Figure 2: Aero-acoustics application 

The duct is spanned by an axial coordinate z, 
transverse coordinate x, and span wise coordinate y. 
the source plane is located at z = 0, and the source 
plane acoustic pressure ps is assumed to be known. 
At the exit plane the dimensionless exit acoustic 
impedance ζexit is assumed to be known. In the duct, 
air is flowing along the positive z axis at a sub-sonic 
speed of u0and the duct has acoustic liners along its 
upper, lower and the two side walls. The duct walls 
are assumed to be locally reacting so that the 
absorbing properties of the acoustic liners results 
from the dimensionless wall impedance ζ that is 
assumed to be known. The sound source pressure, 
dimensionless wall impedance is assumed functions 
of position along their respective boundaries. 
 In this example the finite element system of 
400 degree of freedom, unsymmetrical (complex 
numbers) system, and five generated right hand side 
vectors are solved in the similar fashion as for the 
previous case. The unified GCR algorithm 
converges in {218,46,19,14,16} iterations, cor-
responding to the right hand side vectors {1,2,3,4,5}, 
respectively. The absolute error norms for the 
solutions are {2.182E–4, 3.469E–4, 5.836E–4, 
9.054E–4, 8.778E–4}, respectively. 
 
Example 3: Non linear system of equations (100 
degree of freedoms system) 
In this example, Newton-Raphson and the unified 
GCR algorithm are used to solve a system of non-
linear equations. The system is based upon a 
building block of the following three nonlinear 
equations. 
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1 2

3
1 1 2 3 1 1 2 3

2 3
2 1 2 3 1 2 2 3

(-x x ) 3
3 1 2 3 3 3

( , , ) 3x +3x -cos(x x )-0.5
( , , ) x +81(x +0.1)+81x +sin(x )+1.06
( , , ) e +20x +20x +(10pi-3)/3

x x x
x x x
x x x

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪≡ =⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

F
F F

F
 

 
where x1,x2,x3 are the local variables. Then three 
integers are randomly generated in order simulate 
elements of a larger non-linear system. Then the 
local variables are converted into global variables 
and the system is built to get the 100 non-linear 
equations. 
 Once the F vector is assembled, we calculate 
the tangent stiffness matrix and solve for the 
unknown displacement-vector, using the Newton-
Raphson method. The increment in the x i.e. dx is 
solved using the unified GCR algorithm. The 100 
non-linear equations problem was converged in 6 
Newton-Raphson iterations. 
Table 4: GCR and Newton-Raphson Algorithms to 

solve 100 non-linear equations 
N-R 

iteration 
no. 

 
N-R 
error 

Unified 
GCR 

iterations 

 
GCR residue 

1 2.7992 29 388e-005 
2 0.3444 26 4.2716e-005 
3 0.0242 26 6.0358e-005 
4 9.61e-4 21 9.6438e-005 
5 1.72e-4 16 9.7629e-005 
6 3.78e-5 16 7.6250e-005 

 
Example 4: GCR with Out-of-core Strategies for 
cumulative vectors: 
Out of core strategies used: The user will specify 
how much space (or in-core computer memory) is 
available. The storage scheme will be generated 
accordingly. The algorithm is written in such a way 
that it divides the available computer memory into 
two parts (i.e. two matrices). One matrix is used for 
in-core available vectors and the other matrix is 
used to read the out of core vectors. 
Storage scheme: At any time during the unified 
GCR process, if the in core matrix has utilized all 
the available space, the algorithm writes the data in 
binary formats into a file and all the in-core vectors 
are destroyed. The in-core matrix is again free to 
store another user specified number of vectors. This 
process repeats itself until the convergence is 
achieved. 
Reading scheme: When the out of core vectors are 
required, the out-of-core matrix reads the 
appropriate file and the vectors are made available 
for computation. After the vectors in the file are 
used, the out of core matrix is destroyed. 

The developed out-of-core strategies will be 
validated by solving 2-D symmetrical (real 
numbers) frame structure problem (with 675 degrees 
of freedom and 5 RHS), and 2-D unsymmetrical 
(complex numbers) Aero-Acoustic problem (with 
576 degrees of freedom and 7 RHS vectors). The 
key data and results are summarized in Table 5. 

Table 5: In-core and Out-of-core GCR strategies. 

Problem 
Description  

2-D 
Symmetrical 

Frame 

2-D 
Unsymmetrical 
Aero-Acoustic  

Total # dof 675 576 

Total # RHS 
vectors 5 7 

(a) 675 (in-
core 
strategies) 

(a) 576 (in-core 
strategies) Maximum # 

accumulated 
vectors 
allowed  

(b) 65 (out-
of-core 
strategies)  

(b) 80 (out-of-core 
strategies) 

(a) {483,13, 
12,12,12}  

(a) {353,59,25, 
16,12,6,6} 

Number of 
converged 

iteration, for 
each RHS 

vector 
(b) {483,13, 
12,12,12} 

(b) {353,59,25,16, 
12,6,6} 

(a) 301.41 
seconds (a) 181.46 seconds 

Elapsed time 
(b) 307.94 
seconds (b) 184.07 seconds 

4. Summary 
In this paper, the unsymmetrical GCR presented in 
Ref. [1] has been modified so that the following 
enhanced capabilities and conclusions can be stated: 

• Both symmetrical and unsymmetrical 
matrix equations can be treated under a 
unified framework (including multiple RHS 
strategies). 

• The suggested algorithm only involves with 
one “fairly large” incore memory array 
(instead of using two fairly large incore 
memory arrays, as presented in Ref. [1]). 

• Both real and complex numbers can be 
treated. 

• Through extensive test cases: linear/ 
nonlinear analysis, symmetrical/ unsym-
metrical matrices, real/complex numbers, 
generic mathematical/structural/acoustic 
applications, the unified GCR seems to be 
robust and efficient, especially for handling 
multiple RHS load vectors. 
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