
UNSYMMETRICAL AND SYMMETRICAL SPARSE
ITERATIVE ALGORITHM WITH MULTIPLE RIGHT-

HAND - SIDES STRATEGIES

D.T. NGUYEN^, A.P. HONRAO'', G. HOU", O. AKAN^, and O. BAYSAL~
^Civil & Env. Engineering Dept. 1319 ECSB, "Mechanical Engineering Dept. 238

KAUF, ~Aerospace Engineering Dept. 102 KAUF
Old Dominion University

Norfolk, VA-23508
USA

Abstract: - Unified unsymmetrical and symmetrical iterative solvers for handling multiple right-hand-side
vectors are examined in this work. Efficient computer implementation strategies (to reduce computational time
and in-core memory requirements) are proposed. In-core, out-of-core, linear, multiple right hand side (RHS)
vectors, non-linear, symmetrical, and unsymmetrical capabilities of the developed software are demonstrated
by solving variety of problems selected form different engineering disciplines. Results indicate that the
developed algorithm and software is reliable and efficient.

Key-Words: - Sparse, Iterative, Linear, Nonlinear, Conjugate Gradient, Multiple RHS vectors.

1 Introduction

For large-scale engineering and science
problems encountered in practical applications,
finite element analysis (FEA) procedures have been
widely accepted by the engineering communities as
the efficient tool for obtaining the solution. The
most time consuming (and computer memory
requirement) part of the FEA procedures is to solve
the large, discretized system of linear equations.
Recent research works seem to indicate that FEA
procedures, embedded inside the framework of
Domain Decomposition (DD) formulation, where
mixed "direct, sparse", and "iterative" algorithms are
used, can exploit the computational efficiencies
offered by modern parallel processing computer
hardware. In this research work, the Lingen's
unsymmetrical iterative algorithm [1] for efficient
handling multiple right-hand-side (RHS) vectors is
re-examined, and modified, so that both
"unsymmetrical and symmetrical” system of linear
equations [2, 6] can be handled in a sparse matrix
environments. To validate the modified algorithms,
and to evaluate the computational efficiency,
applications in Structural, and Acoustic disciplines
are discussed in this paper.

2 Generalized Conjugate Residual
(GCR) Iterative Algorithms with
Successive Right Hand Side Vectors

To keep the discussion more general, our objective
here is to solve the system of “unsymmetrical,”
linear equations, which can be expressed in the
matrix notations as:

[]A x b=
rr

 (1)
where [A] is a given N×N unsymmetrical matrix,
and b

r
 is a given, single right-hand-side vector.

System of “symmetrical” linear equations can be
treated as a special case of “unsymmetrical”
equations. However, more computational efficiency
can be realized if specific algorithms (such as the
Conjugate Gradient algorithms) which exploit the
symmetrical property are used. Successive right-
hand-side vectors will be discussed near the end of
this section.
 Solving Eq. (1) for the unknown vector xr is
equivalent to either of the following optimization
problem:

T T

Nx R

1M in im ize x A x x b1 2
∈

≡ −ψ (2)

or
T

Nx R

M inimize (A x b) * (A x b)2
∈

≡ − −ψ
r rr r (3)

Equation (2) is preferred for the case matrix [A] is
“symmetrical”, while Eq. (3) is suggested if matrix
[A] is “unsymmetrical”.

The minimization problem, described by Eq. (2) or
Eq. (3), can be iteratively solved by the following
step-by-step procedures as indicated in Table 1.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp121-127)

Table 1 Step-by-Step Iterative Optimization
Procedures

Step 0 Initial guessed vector:
(0)x x ; and set iterarion count i 0= =

uuurr
 (4)

Step 1 Set i=i+1 at the current design point, find the
“search direction” to travel, s(i-1) ?

Step 2 Find the step-size, α(how far should we
travel along a given direction s(i-1))?

Step 3 Find the updated, improved design, x(i) ?
 (i) (i 1) (i 1)x x s− −= + α (5)

Step 4 Convergence test

 Convergence is achieved if :

T
1 Tolerance∇ψ ≤ (6)

 T

2 Tolerance∇ψ ≤

and / or
(i) (i 1)x x Tolerance−− ≤ (7)

If convergence is achieved (or, iteration # i=max. # of
iterations allowed) then stop the process.
 Else
 Return to step1
 End if

In Table 1, the 2 most important steps are to find “the
search direction” s(i-1) to travel from the current
design point (see Step 1), and to find “the step size” α
(see Step 2).

2.1. How to find the “Step Size”, α, along a Given
Direction

rs ??

Assuming the search direction (i)s
uuur

 has already been
found, then the new, improved design point can be
computed as (see Step 3 of Table 1):

(i 1) (i) (i)x x s+ = + α (8)
Thus, Eqs. (2 – 3) become minimization problems
with only 1 variable (=α), as following:

() () ()T Ti i i i i i
1 1 1 1

1Min. x s A x s x s b
2

ψ = +α +α − +α (9)

or

() ()Ti i i i
2 2 2Min. A x s b * A x s b⎡ ⎤ ⎡ ⎤ψ = +α − +α −⎣ ⎦ ⎣ ⎦

 (10)

In order to minimize the function values ψ1 (or ψ2),
one needs to satisfy the following requirements:

1

1

d
0

d
ψ

=
α

 (11)

or
2

2

d
0

d
ψ

=
α

 (12)

and

() ()
()

Ti T i

2 Ti T i

s A r

s A A s

−
α = (13)

2.2. How to find the “Search Direction,” si?

The initial direction, s0, is usually selected as the
initial residual:

0 0 0s r (A x b)≡ − = − − (14)
The reason for the above selection of the initial
search direction was because Eq. (14) represents the
gradient ∇ψ1(x0), or “steepest descent direction,” of
the objective ψ1, defined in Eq.(2).

The step size is selected such that

i 1 i 1 i
1 1 1 1

1 1 1

d (x) d (x s) d dx0 *
d d dx d

+ +ψ ψ + α ψ
= = =

α α α
 (15)

i 1 i
10 (x) *s+= ∇ψ (16)

or
i 1 i 1 i

i2 2 2 2

2 2 2

d (x) d (x s) d dx0 * s
d d dx d

+ + ⎛ ⎞ψ ψ +α ψ
= = = =⎜ ⎟α α α⎝ ⎠

(17)

The above equation becomes:

() ()Ti T i i
2s A * A x s b 0⎡ ⎤+ α − =⎣ ⎦ (18)

or

() ()Ti T i 1s A * A x b 0+⎡ ⎤− =⎣ ⎦ (19)

()Ti T i 1s A * r 0+⎡ ⎤ =⎣ ⎦ (20)

Since Eq. (20) represents the “scalar quantity,”
hence it can also be presented in its “transposed”
form, as following:

Ti 1 ir * A s 0+⎡ ⎤ =⎣ ⎦ (21)

Comparing Eq. (21) with Eq. (17), one concludes:
Ti 12

2 r * A
x

+∂ψ ⎡ ⎤∇ψ ≡ ≡ ⎣ ⎦∂
 (22)

Thus, Eq.(21) can also be presented as:
i 1 i

2 (x) *s 0+∇ψ = (23)
One can built a set of “A conjugate” vectors (=s0.s1.
.s 0 1 i i 1(s ,s , ,s ,s)+= L by applying the Gram-
Schmidt procedures to the (new) residual vector:

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp121-127)

i 1 i 1r̂ A x b 0+ += − = (24)
for obtaining the search direction

i
i 1 i 1 k

k
k 0

ˆ ˆ ˆs r β s+ +

=

= +∑ (25)

where

()
i 1 k

k Tk k

ˆ ˆr A sβ
ˆ ˆs A s

+−
= (26)

and the following property of “A conjugate” vectors
will be satisfied:

()Ti 1 kˆ ˆs A s 0 ; k 0,1,2, , i+ = = L (27)

Polak-Rebiere Algorithm for βі becomes:

()
()

Ti 1 i 1

i Ti i

ˆ ˆr *(r)

ˆ ˆr *(r)

+ +

β = = Fletcher-Reeves Algorithms (28)

If [A] is an “unsymmetrical” matrix, then Reference
[1] suggest to use “[AT A] conjugate” vectors as:

i
i 1 i 1 k

k
k 0

ˆ ˆ ˆs r β s+ +

=

= + ∑ (29)

where

() ()
() ()

Ti 1 k

k Tk T k

ˆ ˆA r A s
β

ˆ ˆs A A s

+−
= (30)

with the following “Conjugate like” property:

() ()Ti 1 kˆ ˆA s A s 0+ = (31)

2.3. The Generalized Conjugate Residual
(GCR) algorithm:

Based upon the discussions in previous sections, the
Generalized Conjugate Residual (GCR) algorithms
can be described in the following step-by-step
procedures

Table 2 GCR Step-by-step Algorithms
Step 1 Choose an initial guess for the solution, x0
 Compute 0 0r b A x= −

Step 2 Start optimization iteration, for j=1, 2...
 Choose an initial search direction, jŝ
 where j j 1ŝ r −= (32)
 Compute j jˆv̂ As= ; (portion of Eq.13)

Step 3 Generate a set of conjugate vectors ⋅j,
 The Gram-Schmidt Process

 for k 1,2, j 1= −L

 () ()Tj kv̂ vβ = ; see Eq.(30) (33)

 j j kˆ ˆv v v= −β (34)
 ˆ ˆ ˆj j ks s sβ= + ; see Eq.(29) (35)
 End for

Step 4 Normalize the vectors

 () ()Tj jˆ ˆv vγ = ; complete the denominator

 of Eq.(13) (36)

j

j v̂v =
γ

; “almost” completing Eq.(13) (37)

j

j ŝs =
γ

 (38)

Step 5 Compute the step size

 () ()Tj 1 jr v−α = ; (39)

Step 6 Compute the updated solution
 j j 1 jx x s−= + α (See Eq.8)
Step 7 Update the residual vector
 j j 1 jr r v−= − α (40)
Step 8 Convergence check?

 If
j

Tol
r

b
⎡ ⎤
⎢ ⎥ ≤ ε
⎢ ⎥⎣ ⎦

; Then (41)

 Stop
 Else
 j j 1= +
 Go to Step 2

2.4 How to Efficiently Handle Successive Right-
Hand-Side Vectors?

Assuming we have to solve for the following
problems:

i i[A]x b=
uurr

 (42)
In Eq. (42), the right-hand-side (RHS) vectors are
NOT all available at the same time, but that ib

uur

depends on i 1x −
r

. There are 2 objectives in this
section, which will be discussed in subsequent
paragraphs:
(1) Assuming the 1st solution 1xr , which

corresponds to the 1st RHS vector 1b
uur

 has already
been found in “n1” iterations. Here, we would like to
utilize the first “n1” generated (and orthogonal)

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp121-127)

vectors
j 1,2, ,n1
i 1s =
=

L
to find “better initial guess” for

the 2nd RHS solution vector i 2x =
r

. The new,
improved algorithms will select the initial

solution 0
i 2x =

r
, to minimize the errors defined by ψ1

(see Eq.2), or ψ2 (see Eq.3) in the vector space
spanned by the already existing (and expanding)
“n1” conjugate vectors. In other words, one has:

1
1 1

n0 1 2
1 1 n n n 1 11i 2x [s ,s , ,s] *{P} [S]*{P}× ×= ≡ =

r L (43)

Eq.(43) expresses that the initial guess vector 0
2xr is

a linear combinations of columns 1n1 2
1 1 1s ,s , ,sL . By

minimizing (with respect to {P}) ψ2 (defined in
Eq.3), one obtains:

2
p 2() 0

P
∂ψ

∇ ψ ≡ =
∂

r
r (44)

which will lead to:
T T
1 n n 2 n 1n n1

T Tn1 1
1 1

[s] *[A] *{b }
{P}

[s][A][A][s]
× ××

×
=

r

 (45)

For the “symmetrical” matrix case, one gets:
1

p 1() 0
P

∂ψ
∇ ψ ≡ =

∂

r
r (46)

which will lead to:
T
1 2
T
1 1

[s]*{b }{P}
[s][A][s]

=
r

 (47)

The step-by-step algorithms to generate “good”

initial guess 0
2x

uur
 for the 2nd RHS vector can be given

as shown in Table 3.

Table 3 Step-by-step Algorithms to Generate
“Good” Initial Guess for RHS Vectors

0
2x 0=

uur r
 (48)

0
2 2r b=

uur uur
 (49)

1for k 1, 2, , n= L (50)

() ()T0 k
2 1P r v= (51)

 0 0 k
2 2 1x x Ps= + (52 also see Eq.43)

Recalled: k k
1 1v As= (see Eq.32, where k

1s has

already been normalized according to Eq.38).
Furthermore, kept in mind that k

1v and k
1s vectors

had already been generated and stored when the 1st-
RHS had been processed.
Thus, Eq.(51) represents the implementation of
Eq.(45), but corresponding to “ONLY 1 column” of

matrix [S1]. That’s why we used to have a “do loop
index k” (see Eq.50) to completely execute Eq.(45)
& Eq.(43).

0 0 k
2 2 1r r P v= − (53)

Eq.(53) can be derived as following :
First, pre-multiplying both sides of Eq.(52) by (-A),
one obtains (note :P=scalar, in Eq.51) :
 0 0 k

2 2 1(A) x (A) x P (A)s− = − + −
Then, adding (b2) to both sides of the above
equation, one gets:
 ()0 0 k

2 2 2 2 1A x b A x b P As− + = − + −

or
 ()0 0 k

2 2 1r r P As= −

or, referring to Eq.(32), then the above Eq. becomes:
 ()0 0 k

2 2 1r r P v= −

which is the same as indicated in Eq.(53).
 End for

(2) For successive RHS vectors, the “search
vectors” sj (see Eq.35, in Table 2) need to be
modified, so that these vectors sj will not only
orthogonal amongst themselves (corresponding to
the current 2nd RHS vector), but they also will
orthogonal with the existing n1 vectors
[corresponding to ALL “previous” RHS vector(s)].
Thus, the total number of (cumulative) conjugate
vectors will be increased, and hence “faster
convergence” in the GCR algorithm can be
expected. Obviously, there will be a “trade-off”
between “faster convergence rate” versus the
“undesired” increase in computer memory
requirement. In practical computer implementation,
the user will specify how many “cumulative”
vectors sj and vj that can be stored in RAM. Then, if
these vectors sj and vj have already filled up the
user’s specified incore memory available and
convergence is still NOT YET achieved, one may
have to “restart” the process (by starting with the
new initial guess etc ...), or using the out of core
strategies. In this work, out of core strategies are
used. The amount of work and the amount of
memory that is required are proportional to the total
number of search vectors that have been generated.
To make the extended GCR algorithm competitive
with direct solution algorithms, it is essential to keep
the total number of generated search vectors as
small as possible. This can be achieved by
preconditioning the system of equations (42).
Another way to reduce the amount of work and the
memory is to use the extended GCR algorithm in

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp121-127)

combination with the Domain Decomposition (DD)
approach [3-5].

3 Numerical Applications

Example 1: Two dimensional Frame structure
(small change at all locations for consecutive RHS
vectors, but dimension of the problem is
1200x1200).
 The basic system has five nodes in
horizontal and five nodes in vertical direction. The
corresponding nodes are connected with vertical and
horizontal members as shown in the Figure 1. Since
2-D frame elements are used in this example, each
node has three degree’s of freedom: two
translational (Tx,Ty) and one rotational (θz), dof.
This basic structure, therefore, has 75 degree’s of
freedom. All the nodes in the bottom floor are fixed
support (Dirichlet type) boundary conditions.

Figure 1: A typical 2-D frame structure (5x5 grid

points)
The length of each element is 10 in., Young’s
modulus is 2x109 Psi. Moment of inertia of the
cross-section is 1x10-10 mm4 and the area of cross
section is 1x10-3 mm2. Multiple right hand sides or
the several load cases are applied on the frame
structure.
 In this example, the size of the 2-D frame
structure (see Figure 1) is increased to 400x400 grid
points, in each of the x and y directions. This
structure, therefore, has 1200 degrees of freedom.
Three right hand sides are used in this example. The
unified GCR proposed in the paper converges in
{844,13,14} iterations, corresponding to the right
hand side vectors {1,2,3}, respectively. The absolute
error norms for the solutions are {8.908E-12,
5.618E-12, 6.492E-12}, respectively.

Example 2: Aero-acoustics Application (400
degree of freedom, 2-D un-symmetric system) [5]
 The developed algorithm will be exercised
to study the propagation of acoustic pressure waves

in a three-dimensional duct lined with sound
absorbing materials (acoustic liners) as depicted in
Figure 2.

Figure 2: Aero-acoustics application

The duct is spanned by an axial coordinate z,
transverse coordinate x, and span wise coordinate y.
the source plane is located at z = 0, and the source
plane acoustic pressure ps is assumed to be known.
At the exit plane the dimensionless exit acoustic
impedance ζexit is assumed to be known. In the duct,
air is flowing along the positive z axis at a sub-sonic
speed of u0and the duct has acoustic liners along its
upper, lower and the two side walls. The duct walls
are assumed to be locally reacting so that the
absorbing properties of the acoustic liners results
from the dimensionless wall impedance ζ that is
assumed to be known. The sound source pressure,
dimensionless wall impedance is assumed functions
of position along their respective boundaries.
 In this example the finite element system of
400 degree of freedom, unsymmetrical (complex
numbers) system, and five generated right hand side
vectors are solved in the similar fashion as for the
previous case. The unified GCR algorithm
converges in {218,46,19,14,16} iterations, cor-
responding to the right hand side vectors {1,2,3,4,5},
respectively. The absolute error norms for the
solutions are {2.182E–4, 3.469E–4, 5.836E–4,
9.054E–4, 8.778E–4}, respectively.

Example 3: Non linear system of equations (100
degree of freedoms system)
In this example, Newton-Raphson and the unified
GCR algorithm are used to solve a system of non-
linear equations. The system is based upon a
building block of the following three nonlinear
equations.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp121-127)

1 2

3
1 1 2 3 1 1 2 3

2 3
2 1 2 3 1 2 2 3

(-x x) 3
3 1 2 3 3 3

(, ,) 3x +3x -cos(x x)-0.5
(, ,) x +81(x +0.1)+81x +sin(x)+1.06
(, ,) e +20x +20x +(10pi-3)/3

x x x
x x x
x x x

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪≡ =⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

F
F F

F

where x1,x2,x3 are the local variables. Then three
integers are randomly generated in order simulate
elements of a larger non-linear system. Then the
local variables are converted into global variables
and the system is built to get the 100 non-linear
equations.
 Once the F vector is assembled, we calculate
the tangent stiffness matrix and solve for the
unknown displacement-vector, using the Newton-
Raphson method. The increment in the x i.e. dx is
solved using the unified GCR algorithm. The 100
non-linear equations problem was converged in 6
Newton-Raphson iterations.
Table 4: GCR and Newton-Raphson Algorithms to

solve 100 non-linear equations
N-R

iteration
no.

N-R
error

Unified
GCR

iterations

GCR residue

1 2.7992 29 388e-005
2 0.3444 26 4.2716e-005
3 0.0242 26 6.0358e-005
4 9.61e-4 21 9.6438e-005
5 1.72e-4 16 9.7629e-005
6 3.78e-5 16 7.6250e-005

Example 4: GCR with Out-of-core Strategies for
cumulative vectors:
Out of core strategies used: The user will specify
how much space (or in-core computer memory) is
available. The storage scheme will be generated
accordingly. The algorithm is written in such a way
that it divides the available computer memory into
two parts (i.e. two matrices). One matrix is used for
in-core available vectors and the other matrix is
used to read the out of core vectors.
Storage scheme: At any time during the unified
GCR process, if the in core matrix has utilized all
the available space, the algorithm writes the data in
binary formats into a file and all the in-core vectors
are destroyed. The in-core matrix is again free to
store another user specified number of vectors. This
process repeats itself until the convergence is
achieved.
Reading scheme: When the out of core vectors are
required, the out-of-core matrix reads the
appropriate file and the vectors are made available
for computation. After the vectors in the file are
used, the out of core matrix is destroyed.

The developed out-of-core strategies will be
validated by solving 2-D symmetrical (real
numbers) frame structure problem (with 675 degrees
of freedom and 5 RHS), and 2-D unsymmetrical
(complex numbers) Aero-Acoustic problem (with
576 degrees of freedom and 7 RHS vectors). The
key data and results are summarized in Table 5.

Table 5: In-core and Out-of-core GCR strategies.

Problem
Description

2-D
Symmetrical

Frame

2-D
Unsymmetrical
Aero-Acoustic

Total # dof 675 576

Total # RHS
vectors 5 7

(a) 675 (in-
core
strategies)

(a) 576 (in-core
strategies) Maximum #

accumulated
vectors
allowed

(b) 65 (out-
of-core
strategies)

(b) 80 (out-of-core
strategies)

(a) {483,13,
12,12,12}

(a) {353,59,25,
16,12,6,6}

Number of
converged

iteration, for
each RHS

vector
(b) {483,13,
12,12,12}

(b) {353,59,25,16,
12,6,6}

(a) 301.41
seconds (a) 181.46 seconds

Elapsed time
(b) 307.94
seconds (b) 184.07 seconds

4. Summary
In this paper, the unsymmetrical GCR presented in
Ref. [1] has been modified so that the following
enhanced capabilities and conclusions can be stated:

• Both symmetrical and unsymmetrical
matrix equations can be treated under a
unified framework (including multiple RHS
strategies).

• The suggested algorithm only involves with
one “fairly large” incore memory array
(instead of using two fairly large incore
memory arrays, as presented in Ref. [1]).

• Both real and complex numbers can be
treated.

• Through extensive test cases: linear/
nonlinear analysis, symmetrical/ unsym-
metrical matrices, real/complex numbers,
generic mathematical/structural/acoustic
applications, the unified GCR seems to be
robust and efficient, especially for handling
multiple RHS load vectors.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp121-127)

References:
[1] F.J. Lingen, “A Generalized Conjugate

Residual Method for the Solution of Non-
Symmetric Systems of Equations with Multiple
Right Hand Sides”, IJNM in Engineering, Vol-
44, pp. 641-656(1999).

[2] J.J. Dongarra, I.S. Duff, D.C. Sorensen, and
H.A. Van der Vorst, “Numerical Linear
Algebra for High-Performance Computers”,
SIAM (1998), ISBN # 0-89871- 428-1.

[3] C. Farhat, M. Lesoinne, P. LeTallec, K.
Pierson, and D. Rixen, “FETI-DP: A Dual-
Primal Unified FETI Method-Part I: A Faster
Alternative to the 2 Level FETI Method,”
IJNME, Vol. 50, pp. 1523-1544 (2001).

[4] R. Kanapady, and K.K. Tamma, “A
Scalablility and Space/Time Domain
Decomposition for Structural Dynamics-Part I:
Theoretical Developments and Parallel
Formulations,” Research Report UMSI
2002/188 (November 2002).

[5] D.T. Nguyen, S Tungkahotara, W.R. Watson,
and S.D. Rajan “Parallel Finite Element
Domain Decomposition for Structural/Acoustic
Analysis,” Journal of Computational and
Applied Mechanics, Volume 4, no. 2 pp.189-
201 (2003).

[6] Symbolic Math Toolbox: for use with
MATLAB, user’s guide, Version 3, The
MathWorks Inc., 3 Apple Hill Drive, Natick,
MA-01760-2098.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp121-127)

