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1 Quantum Stochastic Calculus

Let By = {Bi(w)/w € Q}, t > 0, be one-
dimensional classical Brownian motion. Inte-
gration with respect to B; was defined by Ito.
Stochastic integral equations of the form

ot ot
X, = Xo+/ o (s, X,) dB,
0

b(s, X,) ds +/

0

are thought of as stochastic differential equa-

tions of the form

dXt = b(t, Xt) dt + U(t, Xt) dBt

where differentials are handled with the use
of Ito’s formula

(dB,)* =dt, dB,dt=dtdB; = (dt)* =0

In [5], Hudson and Parthasarathy defined
a non-commutative analogue of classical 1to
stochastic calculus on the Boson Fock space
' = I'(L*(R,C)) over L*(R,,C) defined as
the Hilbert space completion of the linear span
of the exponential vectors ¢(f) under the in-
ner product

< Y(f),(g) >=e9>
where f,g € L*(R,,C) and

< fg e /'+°° 7(s) g(s) ds

0
where, here and in what follows, Z denotes
the complex conjugate of z € C. The anni-
hilation, creation and conservation operators

A(f), AT(f) and A(F) respectively, are de-
fined on the exponential vectors ¢ (g) of I" by

Ap(g) = /; g9(s)ds ¥(g)

0
AIZU(Q) = &|e=0 V(g + €X[0,t])

0
App(g) = &’mo (e g).

The basic quantum stochastic differentials
dA;, dAI , and dA; are defined by

dAy == Ayyar — Ay

dAl .= Al

t4+dt

Al

and

dAt = At+dt — At-

Hudson and Parthasarathy defined stochas-
tic integration with respect to the noise dif-
ferentials of Definition 3 and obtained the Ito
multiplication table

dA, dA] = dt
dAt dAt == dAt

dA; dAT = dA]

and

dAt dAt == dAt

while all other products involving dt, dA;,
dAI, and dA; are equal to zero. The two fun-
damental theorems of the Hudson-Partasarathy
quantum stochastic calculus (see Theorems
4.1 and 4.3 of [5]), give formulas for express-
ing the matrix elements

<u@Y(f), M(t)vQY(g) >
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and

<M(t)uy(f), M'(t)v@v(g) >

of quantum stochastic integrals

M(t)

/0 E(s) dA(s) + F(s) dA(s)

+G(s)dAT(s) + H(s)ds

and

M'(t)

/0 E'(s)dA(s) + F'(s) dA(s)

+G'(s)dAT(s) + H'(s) ds

in terms of ordinary Riemann-Lebesgue in-
tegrals. Here E, F', G, H, E', I, G', and H’'
are time dependent (in general) adapted pro-
cesses, while u®(f) and v ®1(g) are in the
exponential domain of H®T', where H is the,
so called, system Hilbert space.

The fundamental result which connects clas-
sical with quantum stochastics is that the
processes B; = A; + AI and P, .= A, +
VA(A, + Al) 4+ Mt are identified through their
vacuum characteristic functionals

< (0), €1 B h(0) >= 5!

and

<(0), € p(0) = ATV

1
dU, = —((iH + 5 L*L) dt + L* W dA,

—LdA] + (1 — W) dA)U,

with Uy = 1, where, for each t > 0, U, is a
unitary operator defined on the tensor prod-
uct H ® I'(L*(R,,C)) of the system Hilbert
space ‘H and the noise (or reservoir) Fock
space I'. Here H, L, W are in B(H), the
space of bounded linear operators on H, with
W unitary and H self-adjoint. We identify
time-independent, bounded, system space op-
erators X with their ampliation X ® 1 to
HT(L*(R.,C)).

The quantum stochastic differential equa-
tion (analogue of the Heisenberg equation for

quantum mechanical observables) satisfied by
the quantum flow j;(X) = U} X Uy, where X
is a bounded system space operator, is

dji(X) = ju(i [H, X]
1
—§(L*LX + XL*L —2L*XL))dt
+i([L*, X]W) dA, + jo(W* [X, L]) dAl

+5,(W* X W — X)dA,
with

Jo(X) =X, t€|0,T]

with classical Brownian motion and the Pois- 2. Quantum Control

son process of intensity A respectively.
Within the framework of Quantum Stochas-

tic Calculus, classical quantum mechanical evo-

lution equations take the form

The quantum stochastic analogue of the prob-
lem of minimizing a quadratic performance cri-
terion associated with a stochastic differential
equation has been considered in [1], [2], and [4].
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Let {U; /t > 0} be an adapted process satisfying
the quantum stochastic differential equation

AUy = (F,U, + wy) dt + 0, Uy d Ay + &, Uy dA]

with Uy = I,t € [0,7], where T > 0 is a
fixed finite horizon, and the coeflicient processes
are adapted, bounded, strongly continuous and
square integrable processes living on the expo-
nential vectors domain € = span{h =v®1(f)}.
Treating u = {u; /t > 0} as a control process,
the quadratic performance functional

T
Jor(u) = / < Uph, X* X Uh >
0

+ < uth,uth >] dt+ < UTh, MUTh >

where X, M are bounded system space oper-
ators, with M > 0, is minimized by the feedback
control u; = —P;U;, where the bounded, posi-
tive, self-adjoint process {F; /t € [0,T]}, with
Pr = M, is the solution of the quantum sto-
chastic Riccati equation

dP, + (P.Fy, + F} P, + ®;P®;, — P} + X*X) dt

+(PUy + ) Pr) d A + (P + ) Py) dA] = 0

and the minimum value is < h, Pyh >.

In the case of quantum flows {j;(X)/t € [0,T]}
defined by j:(X) = U} X Uy, if U, is for each t a
unitary operator, then the equation for U; takes
the form

1
dUy = —((iH + 5 L"L) dt

+L*dA; — LdA)) U,

with Up = I, t € [0,7]. The adjoint equation
is

1
dU;f = ~Uy ((~iH + 5 L*L) dt

—L*dA; + LdA))

with U = I, t € [0,T], where H, L are bounded
system space operators, with H self-adjoint. Us-
ing quantum It6’s formula, we see that {j;(X)/t €
[0,T]} satisfies the quantum stochastic differen-
tial equation

djy(X) = 5, (i[H, X]
1
—5(L"LX + XI*L = 21X L)) dt

+Hi([L*, X)) dA + ji([X, L)) dA]

with jo(X) = X, t € [0,7]. Letting u; =
—1L*LU; and taking M = $L*L, the quadratic
performance functional becomes

T 1
Tur() = [ (ORI + 7L IR

1.
5 (Lhl?

Thinking of L as a control, we interpret the
first term of Jj, (L) as a measure of the size
of the flow over [0,77], the second as a measure
of the control effort over [0,7] and the third as
a "penalty” for allowing the evolution to go on
for a long time. In order for L to be optimal it
must satisfy %L*L = P, where P, is the solution
of the Riccati equation for F; = —iH, &, = L
and ¥, = —L*. For these choices, the Riccati
equation reduces, by the time independence of
P, and the linear independence of dt, dA; and
alA;r , to the equations

[L,L*] =0 (i.e L is normal)

and the Algebraic Riccati Equation (ARE) of
[6]

1
+-P24+X*X =0

H, Py
[7 } 400

1
2



where Py, = %L*L. If there exists a bounded
system space operator K such that %H +KX*is
the generator of an asymptotically stable semi-
group (i.e if the pair (2H, X*) is stabilizable)
then Algebraic Riccati Equation has a positive
self-adjoint solution P,,. We may summarize as
follows:

Let he £, 0< T < +o00, and let H, L, X be
bounded system space operators, such that H is
self-adjoint and the pair (£ H, X*) is stabilizable.
The quadratic performance criterion Jj, r(L) as-
sociated with the quantum flow j;(X), is mini-
mized by L = \/§Polo/ W where P is a posi-
tive self-adjoint solution of the Algebraic Riccati
Equation and W is any bounded, unitary, system
space operator commuting with P,,. Moreover
miny, Jp 7(L) =< h, Psh > independent of T'.

3 Quantum Economics

In Economics, an option is a ticket which is bought

at time t = 0 and which allows the buyer at (in
the case of European call options) or until (in the
case of American call options) time ¢t = T (the
time of maturity of the option) to buy a share of
stock at a fixed exercise price K. In what follows
we restrict to European call options. The ques-
tion is: how much should one be willing to pay
to buy such an option. Let X7 be a reasonable
price. The answer given by Black and Scholes
(cf. [7]) is that an investment of this reasonable
price in a mixed portfolio (i.e part is invested in
stock and part in bond) at time ¢ = 0, should al-
low the investor, through a self-financing strat-
egy (i.e one where the only change in the in-
vestor’s wealth comes from changes of the prices
of the stock and bond), to end up at time ¢t =T
with an amount of (X7—K)* := max(0, X7 —K)
which is the same as the payoff, had the op-
tion been purchased. If (a by),t € [0,7] is a
self -financing trading strategy (i.e an amount
ay is invested in stock at time ¢ and an amount
b; is invested in bond at the same time) then
the value of the portfolio at time ¢ is given by
Vi = ay Xy + by By where, by the self-financing as-
sumption, dV; = a;dX; + by dF;. Here X; and
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0B denote, respectively, the price of the stock
and bond at time t. We assume that dX; =
cX¢dt + 0 Xy dB; and dB; = [yrdt where By
is classical Brownian motion, r > 0 is the con-
stant interest rate of the bond, ¢ > 0 is the mean
rate of return, and o > 0 is the volatility of
the stock. The assets a; and b; are in general
stochastic processes. Letting V; = u(T —t, X})
where Vp = u(0,X7) = (Xr — K)T it can be
shown (cf. [7]) that u(t,z) is the solution of the
Black-Scholes equation

0 B 5 o O
§u(t, x)=(050"x 527

0
+rax Fr ) u(t, x)

with w(0,z) = (X7 — K)*, where z > 0, t €
[0, 77, and it is explicitly given by

u(t,z) =z ®(g(t,x)) — Ke "' ®(h(t,z))

where

glt,z) = 1 t7V2 (In(x/K) + (r +0.50°) )

h(t,x) = g(t,z) — o/t
and

B(z) = (27) 112 / V2 gy,

J —00

Thus a rational price for a European call op-
tion is

Vo = uw(T, Xo)

= Xo ®(9(T, Xo)) — K e " ®((T, Xo))

and the self-financing strategy (a;, b;),t € [0, 7]
is given by



0
at = %U(T —t, Xt)

b = (u(T —t, X;) —as X3) B

In recent years the fields of Quantum Econom-
ics and Quantum Finance have appeared in order
to interpret erratic stock market behavior with
the use of quantum mechanical concepts as in
[8]. The Black-Schole model has recently been
extended in [3] to the quantum setup, within
the framework of Hudson-Parthasarathy quan-
tum stochastic calculus. The stock process X; of
the classical Black-Scholes theory is replaced by
the quantum mechanical process j;(X) = U X®
1U; where |, for each t > 0, Uy is a unitary opera-
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by = (Vi — ar j1(X)) ;.
We interpret the above in the sense of expecta-

tion i.e given u®1(f) in the exponential domain
of H® I', where we will always assume u # 0 so

that [lu @ ¥(f)[| # 0,

<u®Y(f),Viu@(f) >=
a <u®P(f), jt(X)u®p(f) >

+<uY(f),bruP(f) > B

i.e the value process is always in reference to

tor defined on the tensor product H@T'(L*(Ry,C)) a particular quantum mechanical state and

of a system Hilbert space H and the noise Bo-
son Fock space I' = I'(L?(R,, C)), satisfying the
quantum stochastic differential equation

1
dUy = —((iH + 5 L*L) di + L* dA, — LdA)U;

with Uy = 1, where X > 0, H, L, are in B(H),
the space of bounded linear operators on H, with
X and H self-adjoint. The value process V; is
defined for t € [0,T] by

Vi = ay 5y (X) + b By

with terminal condition

Vr = (jr(X) — K)* = max(0, jr(X) - K)

where K > 0 is a bounded self-adjoint system
operator corresponding to the strike price of the
quantum option, a; is a real-valued function, b;
is in general an observable quantum stochastic
processes (i.e by is a self-adjoint operator for each
t >0) and

B =Boe'”

where 3y and r are positive real numbers. There-

fore

<u@P(f), Vru®p(f) >=

max(0, < u®Y(f), (jr(X) = K)u®p(f) >).

As in the classical case we assume that the
portfolio (a¢, b;),t € [0,T] is self -financing i.e

dVy = ay djy (X)) + by dBs

By the Quantum It6 table of Section 1, and
the homomorhism property ji(xy) = ji(z) j:(y),
we obtain

djy(X) = ji(a") dA] + ji(a) dA, + ji(6) dt

and

(djt(X))? = ji(aal)dt

while for k& > 2, (dj;(X))* = 0. Here, and in
what follows,

a=[L* X]

of = [X, L]

and
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6=i[HX] - S {L'LX+ XL L-2L"XL}.

In the above framework, let V; := F(t, j;(X))
where F': [0,T] x B(H®T) — B(H®T) is the
extension to self-adjoint operators x = j;(X) of
the analytic function

—+00

D ang(to. zo) (£ — to)" (x — m0)"

n,k=0

F(t,x) =

7

Equating the coefficients of dt and the quan-
tum stochastic differentials in the two expres-
sions for dV; and combining the resulting two
equations, after simplifying, we obtain

a10(t, ji(X)) + ao2(t, je (X)) je([L*, X] [X, L])

Fao,1(t, (X)) je(X)r = Vir =0

which can be written as

where x and a,, k(to, 7o) are in C, and for \, u € Iy o(t, j1( X)) + %Fog(t,jt(X))jt([L*, X][X, L))

0,1,..)

8)\+u F
P B u(t’ x).
If 1 denotes the identity operator then

F)\“(t .%')

an k(to, x0) = ank(to, z0) 1 = F i (to, o).

k!

Moreover for (to,z¢) = (0,0) we have

+oo
Vi= Y ank(0,0)" ji(X).
n,k=0

By the Quantum Ito6 table

dVy = (a1,0(t, jt(X)) + a0 (t, 5t (X)) ji (0)

+ao2(t, j1 (X)) ji(a oﬂL)) dt

+ao1(t, (X)) ji(al) dA] + ag 1 (£, jo(X)) ji(r) dA;.

while, by the self-financing property,

dVy = (a¢ ji(0) + Vir —ag jo(X) r) dt

+ay ji(al) dAI + at ji (o) dA;.

TFo1(t, jo(X)) o (X) r = F (L, i (X)) 7
with F(T, j7(X)) = (jr(X) — K)T. Letting
x = j1(X), y = jy(L) be arbitrary elements in
BéZ-{@F) and g(x) = [y*, x| [z,y], h(z) = zr, we

1
Fio(t,z) + 5 Foa(t,r) g(x)
+Fo1(t ) h(x) = F(t,x)r.
Letting

u(t,x) =F(T —t,x)

we obtain the Quantum Black-Scholes Equa-
tion

uro(t,x) = % uo2(t, z) g()

+uo 1(t7 :I:) h(lL’) - U(t, .SU) r
with

w(0,j7(X)) = (jr(X) - K)".
To solve the Quantum Black-Scholes Equation
we assume that j;(X?) = ji([L*, X][X, L]) which
implies that [X, L] = W X and [L*, X] = X W*
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where W is an arbitrary unitary operator act-
ing on the system space. The Quantum Black-
Scholes Equation then takes the form

1
uyo(t,x) = 3 ug2(t, x) 22

+ugi(t,x)xr —u(t,x)r

where we may assume that z is a bounded
self-adjoint operator. At (0,0),

“+oo

u(t,z) =Y ank(0,0) (T —t)" 2"

n,k=0
and , since x = ji(X) > 0 and K are invert-
ible, we may let x = K e* where z is a bounded
self-adjoint operator commuting with K. Let-
ting
w(t,z) = u(t, K €*)

we obtain

1
wio(t,z) = 3 wo2(t, 2)

Fuor(1,2) (r = 3) — wlt,2) 7

with w(0, 27) = (jr(X)—K)*, where 27 is de-
fined by K e*7 = jp(X). The quantum analogue
of the classical Black-Scholes option pricing the-
orem can now be formulated as follows:

The solution w(t,z) of the Quantum Black-
Scholes Equation is given by

w(t,z) = Ke* ®(g(t, Ke*))

~K®(h(t, Ke*))e "

where

g(t, K e*) = 2t72 4 (r 4 0.5) /2,
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ht, K e*) = 2t7/2 4+ (r —0.5) t'/2,

and
oo 2n+1
1 1 (—1)" =™
O(x) ==+ § — .
2 /27 o 2npl 2n+1

Moreover, a reasonable price for a quantum
option is w(T, zg) where zy is defined by X =
K e*0. The associated quantum portfolio (ay, b;)
is given by

ar =wo1(t =T, z)

and

by = (w(T —t,2) — ar js (X)) e " Go~"
where z; is defined by j;(X) = K e*.
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