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1 Quantum Stochastic Calculus

Let Bt = fBt(!)=! 2 −g, t ¸ 0, be one-
dimensional classical Brownian motion. Inte-
gration with respect to Bt was de¯ned by Itô.
Stochastic integral equations of the form

Xt = X0 +

Z t

0

b(s;Xs) ds+

Z t

0

¾(s;Xs) dBs

are thought of as stochastic di®erential equa-
tions of the form

dXt = b(t;Xt) dt+ ¾(t;Xt) dBt

where di®erentials are handled with the use
of Itô's formula

(dBt)
2 = dt; dBt dt = dt dBt = (dt)

2 = 0

In [5], Hudson and Parthasarathy de¯ned
a non-commutative analogue of classical Itô
stochastic calculus on the Boson Fock space
¡ = ¡(L2(R+; C)) over L2(R+; C) de¯ned as
the Hilbert space completion of the linear span
of the exponential vectors Ã(f) under the in-
ner product

< Ã(f); Ã(g) >:= e<f;g>

where f; g 2 L2(R+; C) and

< f; g >=

Z +1

0

¹f(s) g(s) ds

where, here and in what follows, ¹z denotes
the complex conjugate of z 2 C. The anni-
hilation, creation and conservation operators
A(f), Ay(f) and ¤(F ) respectively, are de-
¯ned on the exponential vectors Ã(g) of ¡ by

AtÃ(g) :=

Z t

0

g(s) ds Ã(g)

AytÃ(g) :=
@

@²
j²=0 Ã(g + ²Â[0;t])

¤tÃ(g) :=
@

@²
j²=0 Ã(e²Â[0;t])g):

The basic quantum stochastic di®erentials
dAt, dA

y
t , and d¤t are de¯ned by

dAt := At+dt ¡ At

dAyt := A
y
t+dt ¡ Ayt

and

d¤t := ¤t+dt ¡ ¤t:
Hudson and Parthasarathy de¯ned stochas-

tic integration with respect to the noise dif-
ferentials of De¯nition 3 and obtained the Itô
multiplication table

dAt dA
y
t = dt

dAt d¤t = dAt

d¤t dA
y
t = dA

y
t

and

d¤t d¤t = d¤t

while all other products involving dt, dAt,
dAyt , and d¤t are equal to zero. The two fun-
damental theorems of the Hudson-Partasarathy
quantum stochastic calculus (see Theorems
4.1 and 4.3 of [5]), give formulas for express-
ing the matrix elements

< u− Ã(f);M(t) v − Ã(g) >
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and

< M(t)u− Ã(f);M 0(t) v − Ã(g) >
of quantum stochastic integrals

M(t) =

Z t

0

E(s) d¤(s) + F (s) dA(s)

+G(s) dAy(s) +H(s) ds

and

M 0(t) =
Z t

0

E0(s) d¤(s) + F 0(s) dA(s)

+G0(s) dAy(s) +H 0(s) ds

in terms of ordinary Riemann-Lebesgue in-
tegrals. Here E, F , G, H, E0, F 0, G0, and H 0

are time dependent (in general) adapted pro-
cesses, while u−Ã(f) and v−Ã(g) are in the
exponential domain of H−¡, where H is the,
so called, system Hilbert space.
The fundamental result which connects clas-

sical with quantum stochastics is that the
processes Bt := At + A

y
t and Pt := ¤t +p

¸(At+A
y
t)+¸t are identi¯ed through their

vacuum characteristic functionals

< Ã(0); ei sBt Ã(0) >= e¡
s2

2
t

and

< Ã(0); ei s Pt Ã(0) >= e¸ (e
i s¡1) t

with classical Brownian motion and the Pois-
son process of intensity ¸ respectively.
Within the framework of Quantum Stochas-

tic Calculus, classical quantummechanical evo-
lution equations take the form

dUt = ¡((iH + 1
2
L¤L) dt+ L¤W dAt

¡LdAyt + (1¡W ) d¤t)Ut
with U0 = 1, where, for each t ¸ 0, Ut is a

unitary operator de¯ned on the tensor prod-
uct H − ¡(L2(R+; C)) of the system Hilbert
space H and the noise (or reservoir) Fock
space ¡. Here H, L, W are in B(H), the
space of bounded linear operators on H, with
W unitary and H self-adjoint. We identify
time-independent, bounded, system space op-
erators X with their ampliation X − 1 to
H− ¡(L2(R+; C)).
The quantum stochastic di®erential equa-

tion (analogue of the Heisenberg equation for
quantum mechanical observables) satis¯ed by
the quantum °ow jt(X) = U

¤
t X Ut, where X

is a bounded system space operator, is

djt(X) = jt(i [H;X]

¡1
2
(L¤LX +XL¤L¡ 2L¤XL)) dt

+jt([L
¤; X]W ) dAt + jt(W ¤ [X;L]) dAyt

+jt(W
¤XW ¡X) d¤t

with

j0(X) = X; t 2 [0; T ]

2. Quantum Control

The quantum stochastic analogue of the prob-
lem of minimizing a quadratic performance cri-
terion associated with a stochastic di®erential
equation has been considered in [1], [2], and [4].
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Let fUt = t ¸ 0g be an adapted process satisfying
the quantum stochastic di®erential equation

dUt = (FtUt + ut) dt+ªt Ut dAt +©t Ut dA
y
t

with U0 = I; t 2 [0; T ], where T > 0 is a
¯xed ¯nite horizon, and the coe±cient processes
are adapted, bounded, strongly continuous and
square integrable processes living on the expo-
nential vectors domain E = spanfh = v−Ã(f)g.
Treating u = fut = t ¸ 0g as a control process,
the quadratic performance functional

Jh;T (u) =

Z T

0
[< Uth;X

¤X Uth >

+ < uth; uth >] dt+ < UTh;M UTh >

where X; M are bounded system space oper-
ators, withM ¸ 0, is minimized by the feedback
control ut = ¡PtUt, where the bounded, posi-
tive, self-adjoint process fPt = t 2 [0; T ]g, with
PT = M , is the solution of the quantum sto-
chastic Riccati equation

dPt + (PtFt + F
¤
t Pt +©

¤
tPt©t ¡ P 2t +X¤X) dt

+(Ptªt +©
¤
tPt) dAt + (Pt©t +ª

¤
tPt) dA

y
t = 0

and the minimum value is < h;P0h >.
In the case of quantum °ows fjt(X)= t 2 [0; T ]g

de¯ned by jt(X) = U
¤
t X Ut, if Ut is for each t a

unitary operator, then the equation for Ut takes
the form

dUt = ¡((iH +
1

2
L¤L) dt

+L¤dAt ¡ LdAyt)Ut
with U0 = I; t 2 [0; T ]. The adjoint equation

is

dU¤t = ¡U¤t ((¡iH +
1

2
L¤L) dt

¡L¤dAt + LdAyt)
with U¤0 = I; t 2 [0; T ], whereH; L are bounded

system space operators, with H self-adjoint. Us-
ing quantum Itô's formula, we see that fjt(X)= t 2
[0; T ]g satis¯es the quantum stochastic di®eren-
tial equation

djt(X) = jt(i[H;X]

¡1
2
(L¤LX +XL¤L¡ 2L¤XL)) dt

+jt([L
¤;X]) dAt + jt([X;L]) dA

y
t

with j0(X) = X; t 2 [0; T ]. Letting ut =
¡1
2L

¤LUt and taking M = 1
2L

¤L, the quadratic
performance functional becomes

Jh;T (L) =

Z T

0
[ kjt(X)hk2 + 1

4
kjt(L¤L)hk2 ] dt

+
1

2
kjT (L)hk2

Thinking of L as a control, we interpret the
¯rst term of Jh;T (L) as a measure of the size
of the °ow over [0; T ], the second as a measure
of the control e®ort over [0; T ] and the third as
a "penalty" for allowing the evolution to go on
for a long time. In order for L to be optimal it
must satisfy 1

2L
¤L = Pt where Pt is the solution

of the Riccati equation for Ft = ¡iH, ©t = L
and ªt = ¡L¤. For these choices, the Riccati
equation reduces, by the time independence of
Pt and the linear independence of dt, dAt and

dAyt , to the equations

[L;L¤] = 0 (i.e L is normal)

and the Algebraic Riccati Equation (ARE) of
[6]

i

2
[H;P1] +

1

4
P 21 +X

¤X = 0
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where P1 = 1
2L

¤L. If there exists a bounded
system space operator K such that i2H+KX

¤ is
the generator of an asymptotically stable semi-
group (i.e if the pair ( i2H, X

¤) is stabilizable)
then Algebraic Riccati Equation has a positive
self-adjoint solution P1. We may summarize as
follows:
Let h 2 E , 0 < T < +1, and let H, L, X be

bounded system space operators, such that H is
self-adjoint and the pair ( i2H, X

¤) is stabilizable.
The quadratic performance criterion Jh;T (L) as-
sociated with the quantum °ow jt(X), is mini-

mized by L =
p
2P

1=2
1 W where P1 is a posi-

tive self-adjoint solution of the Algebraic Riccati
Equation andW is any bounded, unitary, system
space operator commuting with P1. Moreover
minL Jh;T (L) =< h;P1h > independent of T .

3 Quantum Economics

In Economics, an option is a ticket which is bought
at time t = 0 and which allows the buyer at (in
the case of European call options) or until (in the
case of American call options) time t = T (the
time of maturity of the option) to buy a share of
stock at a ¯xed exercise price K. In what follows
we restrict to European call options. The ques-
tion is: how much should one be willing to pay
to buy such an option. Let XT be a reasonable
price. The answer given by Black and Scholes
(cf. [7]) is that an investment of this reasonable
price in a mixed portfolio (i.e part is invested in
stock and part in bond) at time t = 0, should al-
low the investor, through a self-¯nancing strat-
egy (i.e one where the only change in the in-
vestor's wealth comes from changes of the prices
of the stock and bond), to end up at time t = T
with an amount of (XT¡K)+ := max(0;XT¡K)
which is the same as the payo®, had the op-
tion been purchased. If (at; bt); t 2 [0; T ] is a
self -¯nancing trading strategy (i.e an amount
at is invested in stock at time t and an amount
bt is invested in bond at the same time) then
the value of the portfolio at time t is given by
Vt = atXt+ bt ¯t where, by the self-¯nancing as-
sumption, dVt = at dXt + bt d¯t. Here Xt and

¯t denote, respectively, the price of the stock
and bond at time t. We assume that dXt =
cXt dt + ¾Xt dBt and d¯t = ¯t r dt where Bt
is classical Brownian motion, r > 0 is the con-
stant interest rate of the bond, c > 0 is the mean
rate of return, and ¾ > 0 is the volatility of
the stock. The assets at and bt are in general
stochastic processes. Letting Vt = u(T ¡ t;Xt)
where VT = u(0;XT ) = (XT ¡ K)+ it can be
shown (cf. [7]) that u(t; x) is the solution of the
Black-Scholes equation

@

@t
u(t; x) = (0:5¾2 x2

@2

@x2

+r x
@

@x
¡ r)u(t; x)

with u(0; x) = (XT ¡K)+, where x > 0; t 2
[0; T ], and it is explicitly given by

u(t; x) = x©(g(t; x))¡K e¡r t©(h(t; x))
where

g(t; x) = ¾¡1 t¡1=2 (ln(x=K) + (r + 0:5¾2) t)

h(t; x) = g(t; x)¡ ¾pt
and

©(x) = (2¼)¡1=2
Z x

¡1
e¡y

2=2 dy:

Thus a rational price for a European call op-
tion is

V0 = u(T;X0)

= X0©(g(T;X0))¡K e¡r T ©(h(T;X0))
and the self-¯nancing strategy (at; bt); t 2 [0; T ]

is given by
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at =
@

@x
u(T ¡ t;Xt)

bt = (u(T ¡ t;Xt)¡ atXt)¯¡1t :

In recent years the ¯elds of Quantum Econom-
ics and Quantum Finance have appeared in order
to interpret erratic stock market behavior with
the use of quantum mechanical concepts as in
[8]. The Black-Schole model has recently been
extended in [3] to the quantum setup, within
the framework of Hudson-Parthasarathy quan-
tum stochastic calculus. The stock process Xt of
the classical Black-Scholes theory is replaced by
the quantummechanical process jt(X) = U

¤
t X−

1Ut where , for each t ¸ 0, Ut is a unitary opera-
tor de¯ned on the tensor productH−¡(L2(R+; C))
of a system Hilbert space H and the noise Bo-
son Fock space ¡ = ¡(L2(R+; C)), satisfying the
quantum stochastic di®erential equation

dUt = ¡((iH +
1

2
L¤L) dt+ L¤ dAt ¡ LdAyt)Ut

with U0 = 1, where X > 0, H, L, are in B(H),
the space of bounded linear operators onH, with
X and H self-adjoint. The value process Vt is
de¯ned for t 2 [0; T ] by

Vt = at jt(X) + bt ¯t

with terminal condition

VT = (jT (X)¡K)+ = max(0; jT (X)¡K)
where K > 0 is a bounded self-adjoint system

operator corresponding to the strike price of the
quantum option, at is a real-valued function, bt
is in general an observable quantum stochastic
processes (i.e bt is a self-adjoint operator for each
t ¸ 0) and

¯t = ¯0 e
t r

where ¯0 and r are positive real numbers. There-
fore

bt = (Vt ¡ at jt(X))¯¡1t :

We interpret the above in the sense of expecta-
tion i.e given u−Ã(f) in the exponential domain
of H− ¡, where we will always assume u6= 0 so
that ku− Ã(f)k 6= 0,

< u− Ã(f); Vt u− Ã(f) >=

at < u− Ã(f); jt(X)u− Ã(f) >

+ < u− Ã(f); bt u− Ã(f) > ¯t

i.e the value process is always in reference to
a particular quantum mechanical state and

< u− Ã(f); VT u− Ã(f) >=

max(0; < u− Ã(f); (jT (X)¡K)u− Ã(f) >):
As in the classical case we assume that the

portfolio (at; bt); t 2 [0; T ] is self -¯nancing i.e

dVt = at djt(X) + bt d¯t

By the Quantum Itô table of Section 1, and
the homomorhism property jt(x y) = jt(x) jt(y),
we obtain

djt(X) = jt(®
y) dAyt + jt(®) dAt + jt(µ) dt

and

(djt(X))
2 = jt(®®

y) dt

while for k ¸ 2, (djt(X))
k = 0. Here, and in

what follows,

® = [L¤;X]

®y = [X;L]

and
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µ = i [H;X]¡ 1
2
fL¤ LX +X L¤ L¡ 2L¤X Lg:

In the above framework, let Vt := F (t; jt(X))
where F : [0; T ]£B(H− ¡) ¡! B(H− ¡) is the
extension to self-adjoint operators x = jt(X) of
the analytic function

F (t; x) =
+1X
n;k=0

an;k(t0; x0) (t¡ t0)n (x¡ x0)k

where x and an;k(t0; x0) are inC, and for ¸; ¹ 2
f0; 1; :::g

F¸¹(t; x) =
@¸+¹F

@t¸ @x¹
(t; x):

If 1 denotes the identity operator then

an;k(t0; x0) = an;k(t0; x0) 1 =
1

n! k!
Fnk(t0; x0):

Moreover for (t0; x0) = (0; 0) we have

Vt =
+1X
n;k=0

an;k(0; 0) t
n jt(X)

k:

By the Quantum Itô table

dVt = (a1;0(t; jt(X)) + a0;1(t; jt(X)) jt(µ)

+a0;2(t; jt(X)) jt(®®
y)) dt

+a0;1(t; jt(X)) jt(®
y) dAyt + a0;1(t; jt(X)) jt(®) dAt:

while, by the self-¯nancing property,

dVt = (at jt(µ) + Vt r ¡ at jt(X) r) dt

+at jt(®
y) dAyt + at jt(®) dAt:

Equating the coe±cients of dt and the quan-
tum stochastic di®erentials in the two expres-
sions for dVt and combining the resulting two
equations, after simplifying, we obtain

a1;0(t; jt(X)) + a0;2(t; jt(X)) jt([L
¤;X] [X;L])

+a0;1(t; jt(X)) jt(X) r ¡ Vt r = 0
which can be written as

F1 0(t; jt(X)) +
1

2
F0 2(t; jt(X)) jt([L

¤;X] [X;L])

+F0 1(t; jt(X)) jt(X) r = F (t; jt(X)) r

with F (T; jT (X)) = (jT (X) ¡ K)+. Letting
x = jt(X), y = jt(L) be arbitrary elements in
B(H−¡) and g(x) = [y¤; x] [x; y], h(x) = x r, we
obtain

F1 0(t; x) +
1

2
F0 2(t; x) g(x)

+F0 1(t; x)h(x) = F (t; x) r:

Letting

u(t; x) = F (T ¡ t; x)
we obtain the Quantum Black-Scholes Equa-

tion

u1 0(t; x) =
1

2
u0 2(t; x) g(x)

+u0 1(t; x)h(x)¡ u(t; x) r
with

u(0; jT (X)) = (jT (X)¡K)+:
To solve the Quantum Black-Scholes Equation

we assume that jt(X
2) = jt([L

¤;X] [X;L]) which
implies that [X;L] = W X and [L¤;X] = XW ¤
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where W is an arbitrary unitary operator act-
ing on the system space. The Quantum Black-
Scholes Equation then takes the form

u1 0(t; x) =
1

2
u0 2(t; x)x

2

+u0 1(t; x)x r ¡ u(t; x) r
where we may assume that x is a bounded

self-adjoint operator. At (0; 0),

u(t; x) =
+1X
n;k=0

an;k(0; 0) (T ¡ t)n xk

and , since x = jt(X) > 0 and K are invert-
ible, we may let x = K ez where z is a bounded
self-adjoint operator commuting with K. Let-
ting

!(t; z) := u(t;K ez)

we obtain

!1 0(t; z) =
1

2
!0 2(t; z)

+!0 1(t; z) (r ¡ 1
2
)¡ !(t; z) r

with !(0; zT ) = (jT (X)¡K)+, where zT is de-
¯ned by K ezT = jT (X). The quantum analogue
of the classical Black-Scholes option pricing the-
orem can now be formulated as follows:
The solution !(t; z) of the Quantum Black-

Scholes Equation is given by

!(t; z) = K ez ©(g(t;K ez))

¡K ©(h(t;K ez)) e¡r t
where

g(t;K ez) = z t¡1=2 + (r + 0:5) t1=2;

h(t;K ez) = z t¡1=2 + (r ¡ 0:5) t1=2;
and

©(x) =
1

2
+

1p
2¼

+1X
n=0

(¡1)n
2n n!

x2n+1

2n+ 1
:

Moreover, a reasonable price for a quantum
option is !(T; z0) where z0 is de¯ned by X =
K ez0 . The associated quantum portfolio (at; bt)
is given by

at = !0 1(t¡ T; zt)
and

bt = (!(T ¡ t; zt)¡ at jt(X)) e¡t r ¯0¡1

where zt is de¯ned by jt(X) = K e
zt .
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