Quantum Stochastic Calculus and Some Of Its Applications

ANDREAS BOUKAS
Department of Mathematics and Natural Sciences
The American College of Greece
Aghia Paraskevi 15342, Athens GREECE

Abstract:-We describe the main features of the Hudson-Parthasarathy quantum stochastic calculus and some of its applications to systems control and, recently, to quantum economics.

Key-Words:-Quantum Stochastic Calculus, Quadratic Optimal Control, Algebraic Riccati equation, Option Pricing, Black-Scholes equation.

1 Quantum Stochastic Calculus

Let $B_{t}=\left\{B_{t}(\omega) / \omega \in \Omega\right\}, t \geq 0$, be onedimensional classical Brownian motion. Integration with respect to B_{t} was defined by Itô. Stochastic integral equations of the form

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d B_{s}
$$

are thought of as stochastic differential equations of the form

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t}
$$

where differentials are handled with the use of Itô's formula

$$
\left(d B_{t}\right)^{2}=d t, \quad d B_{t} d t=d t d B_{t}=(d t)^{2}=0
$$

In [5], Hudson and Parthasarathy defined a non-commutative analogue of classical Itô stochastic calculus on the Boson Fock space $\Gamma=\Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathcal{C}\right)\right)$ over $L^{2}\left(\mathbb{R}_{+}, \mathcal{C}\right)$ defined as the Hilbert space completion of the linear span of the exponential vectors $\psi(f)$ under the inner product

$$
<\psi(f), \psi(g)>:=e^{<f, g>}
$$

where $f, g \in L^{2}\left(\mathbb{R}_{+}, \mathcal{C}\right)$ and

$$
<f, g>=\int_{0}^{+\infty} \bar{f}(s) g(s) d s
$$

where, here and in what follows, \bar{z} denotes the complex conjugate of $z \in \mathbb{C}$. The annihilation, creation and conservation operators $A(f), A^{\dagger}(f)$ and $\Lambda(F)$ respectively, are defined on the exponential vectors $\psi(g)$ of Γ by

$$
A_{t} \psi(g):=\int_{0}^{t} g(s) d s \psi(g)
$$

$$
\begin{aligned}
A_{t}^{\dagger} \psi(g) & :=\left.\frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi\left(g+\epsilon \chi_{[0, t]}\right) \\
\Lambda_{t} \psi(g) & \left.:=\left.\frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi\left(e^{\epsilon \chi[0, t]}\right) g\right) .
\end{aligned}
$$

The basic quantum stochastic differentials $d A_{t}, d A_{t}^{\dagger}$, and $d \Lambda_{t}$ are defined by

$$
d A_{t}:=A_{t+d t}-A_{t}
$$

$$
d A_{t}^{\dagger}:=A_{t+d t}^{\dagger}-A_{t}^{\dagger}
$$

and

$$
d \Lambda_{t}:=\Lambda_{t+d t}-\Lambda_{t} .
$$

Hudson and Parthasarathy defined stochastic integration with respect to the noise differentials of Definition 3 and obtained the Itô multiplication table

$$
\begin{gathered}
d A_{t} d A_{t}^{\dagger}=d t \\
d A_{t} d \Lambda_{t}=d A_{t} \\
d \Lambda_{t} d A_{t}^{\dagger}=d A_{t}^{\dagger}
\end{gathered}
$$

and

$$
d \Lambda_{t} d \Lambda_{t}=d \Lambda_{t}
$$

while all other products involving $d t, d A_{t}$, $d A_{t}^{\dagger}$, and $d \Lambda_{t}$ are equal to zero. The two fundamental theorems of the Hudson-Partasarathy quantum stochastic calculus (see Theorems 4.1 and 4.3 of [5]), give formulas for expressing the matrix elements

$$
<u \otimes \psi(f), M(t) v \otimes \psi(g)>
$$

and

$$
<M(t) u \otimes \psi(f), M^{\prime}(t) v \otimes \psi(g)>
$$

of quantum stochastic integrals

$$
\begin{aligned}
M(t) & =\int_{0}^{t} E(s) d \Lambda(s)+F(s) d A(s) \\
& +G(s) d A^{\dagger}(s)+H(s) d s
\end{aligned}
$$

and

$$
\begin{aligned}
M^{\prime}(t) & =\int_{0}^{t} E^{\prime}(s) d \Lambda(s)+F^{\prime}(s) d A(s) \\
& +G^{\prime}(s) d A^{\dagger}(s)+H^{\prime}(s) d s
\end{aligned}
$$

in terms of ordinary Riemann-Lebesgue integrals. Here $E, F, G, H, E^{\prime}, F^{\prime}, G^{\prime}$, and H^{\prime} are time dependent (in general) adapted processes, while $u \otimes \psi(f)$ and $v \otimes \psi(g)$ are in the exponential domain of $\mathcal{H} \otimes \Gamma$, where \mathcal{H} is the, so called, system Hilbert space.

The fundamental result which connects classical with quantum stochastics is that the processes $B_{t}:=A_{t}+A_{t}^{\dagger}$ and $P_{t}:=\Lambda_{t}+$ $\sqrt{\lambda}\left(A_{t}+A_{t}^{\dagger}\right)+\lambda t$ are identified through their vacuum characteristic functionals

$$
<\psi(0), e^{i s B_{t}} \psi(0)>=e^{-\frac{s^{2}}{2} t}
$$

and

$$
<\psi(0), e^{i s P_{t}} \psi(0)>=e^{\lambda\left(e^{i s}-1\right) t}
$$

with classical Brownian motion and the Poisson process of intensity λ respectively.

Within the framework of Quantum Stochastic Calculus, classical quantum mechanical evo lution equations take the form

$$
d U_{t}=-\left(\left(i H+\frac{1}{2} L^{*} L\right) d t+L^{*} W d A_{t}\right.
$$

$$
\left.-L d A_{t}^{\dagger}+(1-W) d \Lambda_{t}\right) U_{t}
$$

with $U_{0}=1$, where, for each $t \geq 0, U_{t}$ is a unitary operator defined on the tensor product $\mathcal{H} \otimes \Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathcal{C}\right)\right)$ of the system Hilbert space \mathcal{H} and the noise (or reservoir) Fock space Γ. Here H, L, W are in $\mathcal{B}(\mathcal{H})$, the space of bounded linear operators on \mathcal{H}, with W unitary and H self-adjoint. We identify time-independent, bounded, system space operators X with their ampliation $X \otimes 1$ to $\mathcal{H} \otimes \Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathcal{C}\right)\right)$.

The quantum stochastic differential equation (analogue of the Heisenberg equation for quantum mechanical observables) satisfied by the quantum flow $j_{t}(X)=U_{t}^{*} X U_{t}$, where X is a bounded system space operator, is

$$
\begin{gathered}
d j_{t}(X)=j_{t}(i[H, X] \\
\left.-\frac{1}{2}\left(L^{*} L X+X L^{*} L-2 L^{*} X L\right)\right) d t \\
+j_{t}\left(\left[L^{*}, X\right] W\right) d A_{t}+j_{t}\left(W^{*}[X, L]\right) d A_{t}^{\dagger} \\
+j_{t}\left(W^{*} X W-X\right) d \Lambda_{t}
\end{gathered}
$$

with

$$
j_{0}(X)=X, \quad t \in[0, T]
$$

2. Quantum Control

The quantum stochastic analogue of the problem of minimizing a quadratic performance criterion associated with a stochastic differential equation has been considered in [1], [2], and [4].

Let $\left\{U_{t} / t \geq 0\right\}$ be an adapted process satisfying the quantum stochastic differential equation

$$
d U_{t}=\left(F_{t} U_{t}+u_{t}\right) d t+\Psi_{t} U_{t} d A_{t}+\Phi_{t} U_{t} d A_{t}^{\dagger}
$$

with $U_{0}=I, t \in[0, T]$, where $T>0$ is a fixed finite horizon, and the coefficient processes are adapted, bounded, strongly continuous and square integrable processes living on the exponential vectors domain $\mathcal{E}=\operatorname{span}\{h=v \otimes \psi(f)\}$. Treating $u=\left\{u_{t} / t \geq 0\right\}$ as a control process, the quadratic performance functional

$$
\begin{gathered}
J_{h, T}(u)=\int_{0}^{T}\left[<U_{t} h, X^{*} X U_{t} h>\right. \\
\left.+<u_{t} h, u_{t} h>\right] d t+<U_{T} h, M U_{T} h>
\end{gathered}
$$

where X, M are bounded system space operators, with $M \geq 0$, is minimized by the feedback control $u_{t}=-P_{t} U_{t}$, where the bounded, positive, self-adjoint process $\left\{P_{t} / t \in[0, T]\right\}$, with $P_{T}=M$, is the solution of the quantum stochastic Riccati equation

$$
\begin{aligned}
& d P_{t}+\left(P_{t} F_{t}+F_{t}^{*} P_{t}+\Phi_{t}^{*} P_{t} \Phi_{t}-P_{t}^{2}+X^{*} X\right) d t \\
& +\left(P_{t} \Psi_{t}+\Phi_{t}^{*} P_{t}\right) d A_{t}+\left(P_{t} \Phi_{t}+\Psi_{t}^{*} P_{t}\right) d A_{t}^{\dagger}=0
\end{aligned}
$$

and the minimum value is $\left.<h, P_{0} h\right\rangle$.
In the case of quantum flows $\left\{j_{t}(X) / t \in[0, T]\right\}$ defined by $j_{t}(X)=U_{t}^{*} X U_{t}$, if U_{t} is for each t a unitary operator, then the equation for U_{t} takes the form

$$
\begin{aligned}
& d U_{t}=-\left(\left(i H+\frac{1}{2} L^{*} L\right) d t\right. \\
& \left.\quad+L^{*} d A_{t}-L d A_{t}^{\dagger}\right) U_{t}
\end{aligned}
$$

with $U_{0}=I, t \in[0, T]$. The adjoint equation is

$$
\left.-L^{*} d A_{t}+L d A_{t}^{\dagger}\right)
$$

with $U_{0}^{*}=I, t \in[0, T]$, where H, L are bounded system space operators, with H self-adjoint. Using quantum Itô's formula, we see that $\left\{j_{t}(X) / t \in\right.$ $[0, T]\}$ satisfies the quantum stochastic differential equation

$$
\begin{gathered}
d j_{t}(X)=j_{t}(i[H, X] \\
\left.-\frac{1}{2}\left(L^{*} L X+X L^{*} L-2 L^{*} X L\right)\right) d t \\
+j_{t}\left(\left[L^{*}, X\right]\right) d A_{t}+j_{t}([X, L]) d A_{t}^{\dagger}
\end{gathered}
$$

with $j_{0}(X)=X, t \in[0, T]$. Letting $u_{t}=$ $-\frac{1}{2} L^{*} L U_{t}$ and taking $M=\frac{1}{2} L^{*} L$, the quadratic performance functional becomes

$$
\begin{gathered}
J_{h, T}(L)=\int_{0}^{T}\left[\left\|j_{t}(X) h\right\|^{2}+\frac{1}{4}\left\|j_{t}\left(L^{*} L\right) h\right\|^{2}\right] d t \\
+ \\
+\frac{1}{2}\left\|j_{T}(L) h\right\|^{2}
\end{gathered}
$$

Thinking of L as a control, we interpret the first term of $J_{h, T}(L)$ as a measure of the size of the flow over $[0, T]$, the second as a measure of the control effort over $[0, T]$ and the third as a "penalty" for allowing the evolution to go on for a long time. In order for L to be optimal it must satisfy $\frac{1}{2} L^{*} L=P_{t}$ where P_{t} is the solution of the Riccati equation for $F_{t}=-i H, \Phi_{t}=L$ and $\Psi_{t}=-L^{*}$. For these choices, the Riccati equation reduces, by the time independence of P_{t} and the linear independence of $d t, d A_{t}$ and $d A_{t}^{\dagger}$, to the equations

$$
\left.\left[L, L^{*}\right]=0 \text { (i.e } L \text { is normal }\right)
$$

and the Algebraic Riccati Equation (ARE) of [6]

$$
d U_{t}^{*}=-U_{t}^{*}\left(\left(-i H+\frac{1}{2} L^{*} L\right) d t\right.
$$

$$
\frac{i}{2}\left[H, P_{\infty}\right]+\frac{1}{4} P_{\infty}^{2}+X^{*} X=0
$$

where $P_{\infty}=\frac{1}{2} L^{*} L$. If there exists a bounded system space operator K such that $\frac{i}{2} H+K X^{*}$ is the generator of an asymptotically stable semigroup (i.e if the pair $\left(\frac{i}{2} H, X^{*}\right)$ is stabilizable) then Algebraic Riccati Equation has a positive self-adjoint solution P_{∞}. We may summarize as follows:

Let $h \in \mathcal{E}, 0<T<+\infty$, and let H, L, X be bounded system space operators, such that H is self-adjoint and the pair $\left(\frac{i}{2} H, X^{*}\right)$ is stabilizable. The quadratic performance criterion $J_{h, T}(L)$ associated with the quantum flow $j_{t}(X)$, is minimized by $L=\sqrt{2} P_{\infty}^{1 / 2} W$ where P_{∞} is a positive self-adjoint solution of the Algebraic Riccati Equation and W is any bounded, unitary, system space operator commuting with P_{∞}. Moreover $\min _{L} J_{h, T}(L)=<h, P_{\infty} h>$ independent of T.

3 Quantum Economics

In Economics, an option is a ticket which is bought at time $t=0$ and which allows the buyer at (in the case of European call options) or until (in the case of American call options) time $t=T$ (the time of maturity of the option) to buy a share of stock at a fixed exercise price K. In what follows we restrict to European call options. The question is: how much should one be willing to pay to buy such an option. Let X_{T} be a reasonable price. The answer given by Black and Scholes (cf. [7]) is that an investment of this reasonable price in a mixed portfolio (i.e part is invested in stock and part in bond) at time $t=0$, should allow the investor, through a self-financing strategy (i.e one where the only change in the investor's wealth comes from changes of the prices of the stock and bond), to end up at time $t=T$ with an amount of $\left(X_{T}-K\right)^{+}:=\max \left(0, X_{T}-K\right)$ which is the same as the payoff, had the option been purchased. If $\left(a_{t}, b_{t}\right), t \in[0, T]$ is a self -financing trading strategy (i.e an amount a_{t} is invested in stock at time t and an amount b_{t} is invested in bond at the same time) then the value of the portfolio at time t is given by $V_{t}=a_{t} X_{t}+b_{t} \beta_{t}$ where, by the self-financing assumption, $d V_{t}=a_{t} d X_{t}+b_{t} d \beta_{t}$. Here X_{t} and
β_{t} denote, respectively, the price of the stock and bond at time t. We assume that $d X_{t}=$ $c X_{t} d t+\sigma X_{t} d B_{t}$ and $d \beta_{t}=\beta_{t} r d t$ where B_{t} is classical Brownian motion, $r>0$ is the constant interest rate of the bond, $c>0$ is the mean rate of return, and $\sigma>0$ is the volatility of the stock. The assets a_{t} and b_{t} are in general stochastic processes. Letting $V_{t}=u\left(T-t, X_{t}\right)$ where $V_{T}=u\left(0, X_{T}\right)=\left(X_{T}-K\right)^{+}$it can be shown (cf. [7]) that $u(t, x)$ is the solution of the Black-Scholes equation

$$
\begin{aligned}
& \frac{\partial}{\partial t} u(t, x)=\left(0.5 \sigma^{2} x^{2} \frac{\partial^{2}}{\partial x^{2}}\right. \\
& \left.\quad+r x \frac{\partial}{\partial x}-r\right) u(t, x)
\end{aligned}
$$

with $u(0, x)=\left(X_{T}-K\right)^{+}$, where $x>0, t \in$ $[0, T]$, and it is explicitly given by

$$
u(t, x)=x \Phi(g(t, x))-K e^{-r t} \Phi(h(t, x))
$$

where

$$
\begin{gathered}
g(t, x)=\sigma^{-1} t^{-1 / 2}\left(\ln (x / K)+\left(r+0.5 \sigma^{2}\right) t\right) \\
h(t, x)=g(t, x)-\sigma \sqrt{t}
\end{gathered}
$$

and

$$
\Phi(x)=(2 \pi)^{-1 / 2} \int_{-\infty}^{x} e^{-y^{2} / 2} d y
$$

Thus a rational price for a European call option is

$$
\begin{gathered}
V_{0}=u\left(T, X_{0}\right) \\
=X_{0} \Phi\left(g\left(T, X_{0}\right)\right)-K e^{-r T} \Phi\left(h\left(T, X_{0}\right)\right)
\end{gathered}
$$

and the self-financing strategy $\left(a_{t}, b_{t}\right), t \in[0, T]$ is given by

$$
\begin{array}{r}
a_{t}=\frac{\partial}{\partial x} u\left(T-t, X_{t}\right) \\
b_{t}=\left(u\left(T-t, X_{t}\right)-a_{t} X_{t}\right) \beta_{t}^{-1}
\end{array}
$$

In recent years the fields of Quantum Economics and Quantum Finance have appeared in order to interpret erratic stock market behavior with the use of quantum mechanical concepts as in [8]. The Black-Schole model has recently been extended in [3] to the quantum setup, within the framework of Hudson-Parthasarathy quantum stochastic calculus. The stock process X_{t} of the classical Black-Scholes theory is replaced by the quantum mechanical process $j_{t}(X)=U_{t}^{*} X \otimes$ $1 U_{t}$ where, for each $t \geq 0, U_{t}$ is a unitary operator defined on the tensor product $\mathcal{H} \otimes \Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathcal{C}\right)\right)$ of a system Hilbert space \mathcal{H} and the noise Boson Fock space $\Gamma=\Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathcal{C}\right)\right)$, satisfying the quantum stochastic differential equation
$d U_{t}=-\left(\left(i H+\frac{1}{2} L^{*} L\right) d t+L^{*} d A_{t}-L d A_{t}^{\dagger}\right) U_{t}$
with $U_{0}=1$, where $X>0, H, L$, are in $\mathcal{B}(\mathcal{H})$, the space of bounded linear operators on \mathcal{H}, with X and H self-adjoint. The value process V_{t} is defined for $t \in[0, T]$ by

$$
V_{t}=a_{t} j_{t}(X)+b_{t} \beta_{t}
$$

with terminal condition

$$
V_{T}=\left(j_{T}(X)-K\right)^{+}=\max \left(0, j_{T}(X)-K\right)
$$

where $K>0$ is a bounded self-adjoint system operator corresponding to the strike price of the quantum option, a_{t} is a real-valued function, b_{t} is in general an observable quantum stochastic processes (i.e b_{t} is a self-adjoint operator for each $t \geq 0$) and

$$
\beta_{t}=\beta_{0} e^{t r}
$$

where β_{0} and r are positive real numbers. Therefore

$$
b_{t}=\left(V_{t}-a_{t} j_{t}(X)\right) \beta_{t}^{-1}
$$

We interpret the above in the sense of expectation i.e given $u \otimes \psi(f)$ in the exponential domain of $\mathcal{H} \otimes \Gamma$, where we will always assume $u \neq 0$ so that $\|u \otimes \psi(f)\| \neq 0$,

$$
\begin{gathered}
<u \otimes \psi(f), V_{t} u \otimes \psi(f)>= \\
a_{t}<u \otimes \psi(f), j_{t}(X) u \otimes \psi(f)> \\
+<u \otimes \psi(f), b_{t} u \otimes \psi(f)>\beta_{t}
\end{gathered}
$$

i.e the value process is always in reference to a particular quantum mechanical state and

$$
<u \otimes \psi(f), V_{T} u \otimes \psi(f)>=
$$

$\max \left(0,<u \otimes \psi(f),\left(j_{T}(X)-K\right) u \otimes \psi(f)>\right)$.
As in the classical case we assume that the portfolio $\left(a_{t}, b_{t}\right), t \in[0, T]$ is self -financing i.e

$$
d V_{t}=a_{t} d j_{t}(X)+b_{t} d \beta_{t}
$$

By the Quantum Itô table of Section 1, and the homomorhism property $j_{t}(x y)=j_{t}(x) j_{t}(y)$, we obtain

$$
d j_{t}(X)=j_{t}\left(\alpha^{\dagger}\right) d A_{t}^{\dagger}+j_{t}(\alpha) d A_{t}+j_{t}(\theta) d t
$$

and

$$
\left(d j_{t}(X)\right)^{2}=j_{t}\left(\alpha \alpha^{\dagger}\right) d t
$$

while for $k \geq 2,\left(d j_{t}(X)\right)^{k}=0$. Here, and in what follows,

$$
\begin{aligned}
& \alpha=\left[L^{*}, X\right] \\
& \alpha^{\dagger}=[X, L]
\end{aligned}
$$

and
$\theta=i[H, X]-\frac{1}{2}\left\{L^{*} L X+X L^{*} L-2 L^{*} X L\right\}$.
In the above framework, let $V_{t}:=F\left(t, j_{t}(X)\right)$ where $F:[0, T] \times \mathcal{B}(\mathcal{H} \otimes \Gamma) \longrightarrow \mathcal{B}(\mathcal{H} \otimes \Gamma)$ is the extension to self-adjoint operators $x=j_{t}(X)$ of the analytic function

$$
F(t, x)=\sum_{n, k=0}^{+\infty} a_{n, k}\left(t_{0}, x_{0}\right)\left(t-t_{0}\right)^{n}\left(x-x_{0}\right)^{k}
$$

Equating the coefficients of $d t$ and the quantum stochastic differentials in the two expressions for $d V_{t}$ and combining the resulting two equations, after simplifying, we obtain

$$
a_{1,0}\left(t, j_{t}(X)\right)+a_{0,2}\left(t, j_{t}(X)\right) j_{t}\left(\left[L^{*}, X\right][X, L]\right)
$$

$$
+a_{0,1}\left(t, j_{t}(X)\right) j_{t}(X) r-V_{t} r=0
$$

which can be written as
where x and $a_{n, k}\left(t_{0}, x_{0}\right)$ are in \mathbb{C}, and for $\lambda, \mu \in F_{10}\left(t, j_{t}(X)\right)+\frac{1}{2} F_{02}\left(t, j_{t}(X)\right) j_{t}\left(\left[L^{*}, X\right][X, L]\right)$

$$
F_{\lambda \mu}(t, x)=\frac{\partial^{\lambda+\mu} F}{\partial t^{\lambda} \partial x^{\mu}}(t, x) .
$$

If 1 denotes the identity operator then

$$
a_{n, k}\left(t_{0}, x_{0}\right)=a_{n, k}\left(t_{0}, x_{0}\right) 1=\frac{1}{n!k!} F_{n k}\left(t_{0}, x_{0}\right) .
$$

Moreover for $\left(t_{0}, x_{0}\right)=(0,0)$ we have

$$
V_{t}=\sum_{n, k=0}^{+\infty} a_{n, k}(0,0) t^{n} j_{t}(X)^{k}
$$

By the Quantum Itô table

$$
\begin{aligned}
& d V_{t}=\left(a_{1,0}\left(t, j_{t}(X)\right)+a_{0,1}\left(t, j_{t}(X)\right) j_{t}(\theta)\right. \\
& \left.+a_{0,2}\left(t, j_{t}(X)\right) j_{t}\left(\alpha \alpha^{\dagger}\right)\right) d t \\
& +a_{0,1}\left(t, j_{t}(X)\right) j_{t}\left(\alpha^{\dagger}\right) d A_{t}^{\dagger}+a_{0,1}\left(t, j_{t}(X)\right) j_{t}(\alpha) d A_{t} .
\end{aligned}
$$

while, by the self-financing property,

$$
\begin{aligned}
d V_{t} & =\left(a_{t} j_{t}(\theta)+V_{t} r-a_{t} j_{t}(X) r\right) d t \\
& +a_{t} j_{t}\left(\alpha^{\dagger}\right) d A_{t}^{\dagger}+a_{t} j_{t}(\alpha) d A_{t} .
\end{aligned}
$$

$$
F_{10}(t, x)+\frac{1}{2} F_{02}(t, x) g(x)
$$

$$
+F_{01}(t, x) h(x)=F(t, x) r .
$$

Letting

$$
u(t, x)=F(T-t, x)
$$

we obtain the Quantum Black-Scholes Equation

$$
\begin{aligned}
& u_{10}(t, x)=\frac{1}{2} u_{02}(t, x) g(x) \\
& +u_{01}(t, x) h(x)-u(t, x) r
\end{aligned}
$$

with

$$
u\left(0, j_{T}(X)\right)=\left(j_{T}(X)-K\right)^{+} .
$$

To solve the Quantum Black-Scholes Equation we assume that $j_{t}\left(X^{2}\right)=j_{t}\left(\left[L^{*}, X\right][X, L]\right)$ which implies that $[X, L]=W X$ and $\left[L^{*}, X\right]=X W^{*}$
where W is an arbitrary unitary operator acting on the system space. The Quantum BlackScholes Equation then takes the form

$$
\begin{aligned}
& u_{10}(t, x)=\frac{1}{2} u_{02}(t, x) x^{2} \\
& +u_{01}(t, x) x r-u(t, x) r
\end{aligned}
$$

where we may assume that x is a bounded self-adjoint operator. At $(0,0)$,

$$
u(t, x)=\sum_{n, k=0}^{+\infty} a_{n, k}(0,0)(T-t)^{n} x^{k}
$$

and , since $x=j_{t}(X)>0$ and K are invertible, we may let $x=K e^{z}$ where z is a bounded self-adjoint operator commuting with K. Letting

$$
\omega(t, z):=u\left(t, K e^{z}\right)
$$

we obtain

$$
\begin{gathered}
\omega_{10}(t, z)=\frac{1}{2} \omega_{02}(t, z) \\
+\omega_{01}(t, z)\left(r-\frac{1}{2}\right)-\omega(t, z) r
\end{gathered}
$$

with $\omega\left(0, z_{T}\right)=\left(j_{T}(X)-K\right)^{+}$, where z_{T} is defined by $K e^{z_{T}}=j_{T}(X)$. The quantum analogue of the classical Black-Scholes option pricing theorem can now be formulated as follows:

The solution $\omega(t, z)$ of the Quantum BlackScholes Equation is given by

$$
\begin{gathered}
\omega(t, z)=K e^{z} \Phi\left(g\left(t, K e^{z}\right)\right) \\
\quad-K \Phi\left(h\left(t, K e^{z}\right)\right) e^{-r t}
\end{gathered}
$$

where

$$
g\left(t, K e^{z}\right)=z t^{-1 / 2}+(r+0.5) t^{1 / 2}
$$

$$
h\left(t, K e^{z}\right)=z t^{-1 / 2}+(r-0.5) t^{1 / 2},
$$

and

$$
\Phi(x)=\frac{1}{2}+\frac{1}{\sqrt{2 \pi}} \sum_{n=0}^{+\infty} \frac{(-1)^{n}}{2^{n} n!} \frac{x^{2 n+1}}{2 n+1} .
$$

Moreover, a reasonable price for a quantum option is $\omega\left(T, z_{0}\right)$ where z_{0} is defined by $X=$ $K e^{z_{0}}$. The associated quantum portfolio $\left(a_{t}, b_{t}\right)$ is given by

$$
a_{t}=\omega_{01}\left(t-T, z_{t}\right)
$$

and

$$
b_{t}=\left(\omega\left(T-t, z_{t}\right)-a_{t} j_{t}(X)\right) e^{-t r} \beta_{0}^{-1}
$$

where z_{t} is defined by $j_{t}(X)=K e^{z_{t}}$.

References

[1] Accardi L., A. Boukas A., Quadratic control of quantum processes, Russian Journal of Mathematical Physics, Vol. 9, No. 4, pp. 381400, 2002, MR 1966015.
[2] Accardi L., A. Boukas A., Control of quantum Langevin equations, Open Systems and Information Dynamics, 10 (2003), No. 1, 89-104, MR 1965608.
[3] Boukas A., The Quantum Black-Scholes equation, submitted to Global Journal of Pure and Applied Mathematics (2005).
[4] Boukas A.,Application of Quantum Stochastic Calculus to Feedback Control, Global Journal of Pure and Applied Mathematics, Vol. 1, No.1, (2005).
[5] Hudson R. L. , Parthasarathy K. R., Quantum Ito's formula and stochastic evolutions, Comm. Math. Phys. 93 (1984), 301-323.
[6] Curtain R. F., Pritchard A. J., The infinite dimensional Riccati equation, J. Math. Anal. and Appl. (1974), 47.
[7] Mikosch T., Elementary Stochastic Calculus with Finance in View, World Scientific 1998.
[8] Segal W., Segal I. E., The Black-Scholes pricing formula in the quantum context, Proc. Natl. Acad. Sci. USA, Vol. 95, pp. 4072-4075, March 1998, Economic Sciences1.

