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Abstract: -In this paper the dynamic response of the leg of a tension leg platform (tether) subjected to the load
simulated as ocean wave at the top of the leg is presented. The structural model is very simple but several
complicated factors such as foundation effect, buoyancy and simulated ocean wave load are considered. Two
continuous models are proposed to present the structural system and the mentioned effects. The problem is
solved by means of non-harmonic Fourier expansion in terms of eigenfunctions obtained from a non-regular

Sturm-Liouville system.
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1 Introduction

Tension leg platform (TLP) is a well-known
structure for oil exploitation in deep water. Many
studies have been carried out to understand the
structural behavior of TLP and to determine the
effect of several parameters on dynamic response
and average life time of the structure [1-4]. The
most important point in the design of TLP is the
pretension of the legs. The pretension causes that
the platform behaves like a stiff structure with
respect to the vertical degrees of freedom (heave,
pitch and roll), whereas with respect to the
horizontal degrees of freedom (surge, sway and
yaw) it behaves as a floating structure. Among the
various degrees of freedom, vertical motion (heave)
is very important because of the direct effect on the
stress fluctuation that leads to fatigue and fracture of
tethers. Therefore the conceptual studies to
understand the dynamic vertical response of TLP
can be useful for designers.

Rossit et al. (1996) presented an analytical solution
for the dynamic response of the leg of TLP
subjected to an axial suddenly applied load at one
end [5]. The applied load was constant and the
effect of the buoyancy was not considered. The aim
of this paper is the solution of the mentioned

problem using two models. The structural models
are very simple but several complicated factors such
as foundation, buoyancy and simulated ocean wave
loading are considered. At the first model the
foundation assumed rigid but at the second model it
is assumed that the foundation is embedded in the
ocean bottom, which acts as a Winkler-type
foundation. The buoyancy is modeled as a spring at
the top of the leg. A concentrated force is applied at
the top of the leg as simulated ocean wave load. The
problem is solved by means of non-harmonic
Fourier expansion in terms of eigenfunctions
obtained from a non-regular Sturm-Liouville system
[6, 7]. Tabeshpour et al., (2004a) have investigated
the effect of added mass fluctuation on the heave
response of tension leg platform for a discrete model
by using perturbation method [8]. A continues
model for vertical motion of TLP considering the
effect of continues foundation has been reported by
Tabeshpour et al., (2004b), [9]. Also  Tabeshpour
et al., (2004c) have presented a closed form
formulation for the effect of added mass fluctuation
on the heave response of tension leg platform
considering continues model [10]. General
configuration of TLP is shown in Fig. 1.
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Fig. 1 - Configuration of TLP

2 Analytical Solution of the Model
The structural model of the system is shown in Fig.

2. The behavior of the system is described by the
following differential equation
luy) -uty-1)]E A+ o2y
[uty-1,)-u(y -D]EA JF+
F.t)s(y-1)= @
[uy) —uty=1)]p A+ -
[uy=1)-uty =Dl A+ |55
M, 3(y-1;)+Ms(y-1)

where u is step function, v is the axial deformation,
E is the Young modulus of the tether material, A

and A; are the cross sectional areas of the tether
and foundation respectively, p, and p; are the
density of tether and
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Fig. 2 - Dynamic structural model

foundation material respectively, I, and I; are the

length of tether and foundation respectively and &
denotes the Dirac delta function. The applied
vertical load subjected to the mass m, is the

N
generated wave load, Fh(t)=2Fjsin(th+¢j)
[

obtained from the wave spectrum. The system is
linear, therefore the solution of the equation (1) is
carried out considering a single term
input, F, (t) = F,sin(Qt), and then the overall

response of the system is evaluated by summation of
all responses. The initial conditions are

ov
V(y,O) =0 ’ E(y,O) =0 (2)

The mass distribution functions are defined as

m(y) =[uy)~u@y-1,)]p, A +
[uy-1)-u(y-Dp,A+M , 3(y—1,)+ (3)
M &(y —1)
In the case of free vibration, Eq. (1) becomes
[uy) -u(y-1)]E, A, +] 0%
[uy-1)-u(y-nJE.A

o%v
6y2_m(y)6t_2 4)
Equation (4) can be solved
m(y) =[u(y) —u(y - 1)]p, A,
+luy-1)-uy-nle.A,

assuming

subjected to the boundary conditions

v(0,t) =0 (5)
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Equation (4) can be solved for two parts of the bar.
In0<y=y, <l;,onehas
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where m(y) =p Ay, cf =E¢/ps -

Using separation of variables, the eigenfunctions are
determined as

Yo =Bsinoy; ©))
where o, is the separation constant and and
Cras =0y IS the angular frequency.

Inl; <y=y, <I,onehas
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where m(y) =p, A, ¢ =E,/p; .

Similarly using separation of variables, the
eigenfunctions are determined as
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Now the frequency equation is resulted as
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where o, is the separation constant and and
c.o =0 IS the angular frequency.

It is clear that displacement and force are continues
at y,=I; or y,=0. From the continuity in

displacement one has
Ynl(lf )= Yn2 (It)
or

kp 1 M .

coso,l, +| — ——apl, |sina,l,
kl anllt ml (12)
0

—Bsinol; =

Also the continuity in force gives
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The coefficients A and B can be determined by
solving Egs. (12) and (14). There are nonzero
solutions if

—sinou gl

-0 (15)
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where:

p:Al; =m, : total mass of the tether;

psA¢l; =m;, : total mass of the foundation;

E, A /I, =k,: the axial stiffness of the tether, and
E(A; /Iy =k : axial stiffness of the foundation.

The response of the tether subjected to axial load,
can be expressed in terms of normal modes of the
system

V(Y. 1) = D Yo (NTo (1) (17)

n=1
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18
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[uy-1,)-u(y-D]p.A+M , 3(y~1,) (19)

M S(y 1)

Because of the orthogonality of the normal modes, it
can be shown that

[ MO, 0=00=n (202)
[ MO, 0.0 =H, @ =n) (20b)
Defining

Mi(y1) =pAs+M8(yy —1+) (21)
and
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Equation (20) can be rewritten as
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Multiplying Eq.(1) by

Y, (N)dy =[u(y) —u(y -1 )Y, (y)ay +
[uy=17)-u(y =Y (y)dy

and integrating between 0 and |, one obtains
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since Y, satisfies (8) and Y,, satisfies (10), one has
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Solving the above differential equation, one has (_Esm ot +Sin(9t)]
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3 Conclusion
Y, () =[uy)-u(y-1,)Jsin oy, + The analytical solution of the tether response of
[u(y_|f )_u(y_|)]>< (36) TLP was presented for a simple continuous model.
The applied load is a simulation of ocean wave.
cosa,, Y, + [kb 1 Mamlt]sin oY, Some complicated factors such as foundation effect
ke ol my and buoyancy were considered. The presented
. . solutions give a conceptual view of the heave
Now the dynamic response of the tether is response of TLP under sea wave loads. The
w N formulation presented herein can be used in
v(y,t) = ZzYn (VT (1) (37) analytical study on fatigue life of tethers.
n=l j=1
The dynamic stress of the tether becomes
ov
o(y.) =EAZ (V.0 (38)
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