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Abstract: -In this paper the dynamic response of the leg of a tension leg platform (tether) subjected to the load 
simulated as ocean wave at the top of the leg is presented. The structural model is very simple but several 
complicated factors such as foundation effect, buoyancy and simulated ocean wave load are considered. Two 
continuous models are proposed to present the structural system and the mentioned effects. The problem is 
solved by means of non-harmonic Fourier expansion in terms of eigenfunctions obtained from a non-regular 
Sturm-Liouville system. 
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1  Introduction 
Tension leg platform (TLP) is a well-known 
structure for oil exploitation in deep water. Many 
studies have been carried out to understand the 
structural behavior of TLP and to determine the 
effect of several parameters on dynamic response 
and average life time of the structure [1-4]. The 
most important point in the design of TLP is the 
pretension of the legs. The pretension causes that 
the platform behaves like a stiff structure with 
respect to the vertical degrees of freedom (heave, 
pitch and roll), whereas with respect to the 
horizontal degrees of freedom (surge, sway and 
yaw) it behaves as a floating structure. Among the 
various degrees of freedom, vertical motion (heave) 
is very important because of the direct effect on the 
stress fluctuation that leads to fatigue and fracture of 
tethers. Therefore the conceptual studies to 
understand the dynamic vertical response of TLP 
can be useful for designers. 
Rossit et al. (1996) presented an analytical solution 
for the dynamic response of the leg of TLP 
subjected to an axial suddenly applied load at one 
end [5]. The applied load was constant and the 
effect of the buoyancy was not considered. The aim 
of this paper is the solution of the mentioned 

problem using two models. The structural models 
are very simple but several complicated factors such 
as foundation, buoyancy and simulated ocean wave 
loading are considered. At the first model the 
foundation assumed rigid but at the second model it 
is assumed that the foundation is embedded in the 
ocean bottom, which acts as a Winkler-type 
foundation. The buoyancy is modeled as a spring at 
the top of the leg. A concentrated force is applied at 
the top of the leg as simulated ocean wave load. The 
problem is solved by means of non-harmonic 
Fourier expansion in terms of eigenfunctions 
obtained from a non-regular Sturm-Liouville system 
[6, 7]. Tabeshpour et al., (2004a) have investigated 
the effect of added mass fluctuation on the heave 
response of tension leg platform for a discrete model 
by using perturbation method [8]. A continues 
model for vertical motion of TLP considering the 
effect of continues foundation has been reported by 
Tabeshpour et al., (2004b), [9]. Also     Tabeshpour 
et al., (2004c) have presented a closed form 
formulation for the effect of added mass fluctuation 
on the heave response of tension leg platform 
considering continues model [10]. General 
configuration of TLP is shown in Fig. 1. 
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Fig. 1 - Configuration of TLP 

 
2  Analytical Solution of the Model 
The structural model of the system is shown in Fig. 
2. The behavior of the system is described by the 
following differential equation 
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where u is step function, v is the axial deformation, 
E is the Young modulus of the tether material, tA  
and fA  are the cross sectional areas of the tether 

and foundation respectively, tρ  and fρ  are the 
density of tether and  

 
Fig. 2 - Dynamic structural model 

 

foundation material respectively, tl  and fl  are the 
length of tether and foundation respectively and δ  
denotes the Dirac delta function. The applied 
vertical load subjected to the mass m, is the 

generated wave load, ∑
=

φ+Ω=
N

j
jjjh tFtF
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obtained from the wave spectrum. The system is 
linear, therefore the solution of the equation (1) is 
carried out considering a single term 
input, )sin()( 0 tFtFh Ω= , and then the overall 
response of the system is evaluated by summation of 
all responses. The initial conditions are 
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The mass distribution functions are defined as  
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In the case of free vibration, Eq. (1) becomes 
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Equation (4) can be solved assuming 
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 subjected to the boundary conditions  
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Equation (4) can be solved for two parts of the bar.  
In flyy ≤=≤ 10 , one has 
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where ff Aym ρ=)( , fff Ec ρ=2 .                                                                                                                     

Using separation of variables, the eigenfunctions are 
determined as 

11 sin yBY nfn α=                                                  (9) 
where nfα  is the separation constant and and 

nfnffc ω=α  is the angular frequency. 

In lyyl f ≤=≤ 2 , one has 
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where tt Aym ρ=)( , ttt Ec ρ=2 .                                                                               

Similarly using separation of variables, the 
eigenfunctions are determined as 
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where ntα  is the separation constant and and 
ntnttc ω=α  is the angular frequency. 

It is clear that displacement and force are continues 
at fly =1  or 02 =y . From the continuity in 
displacement one has  
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Also the continuity in force gives  
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The coefficients A and B can be determined by 
solving Eqs. (12) and (14). There are nonzero 
solutions if   
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Now the frequency equation is resulted as 
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where:  

tttt mlA =ρ : total mass of the tether; 

ffff mlA =ρ : total mass of the foundation; 

tttt klAE = : the axial stiffness of the tether, and 

ffff klAE = : axial stiffness of the foundation. 

The response of the tether subjected to axial load, 
can be expressed in terms of normal modes of the 
system    
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Because of the orthogonality of the normal modes, it 
can be shown that 
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Multiplying Eq.(1) by  
[ ]

[ ] dyyYlyulyu

dyyYlyuyudyyY

f

fn

)()()(

)()()()(

2

1

−−−

+−−=
 

and integrating between 0 and l , one obtains  
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since 1nY  satisfies (8) and 2nY  satisfies (10), one has 
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Substituting (27) and (28) in (26) and applying (23) 
results in 
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Solving the above differential equation, one has 
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or 
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Now the dynamic response of the tether is  
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The dynamic stress of the tether becomes  
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3  Conclusion 
The analytical solution of the tether response of 
TLP was presented for a simple continuous model. 
The applied load is a simulation of ocean wave. 
Some complicated factors such as foundation effect 
and buoyancy were considered. The presented 
solutions give a conceptual view of the heave 
response of TLP under sea wave loads. The 
formulation presented herein can be used in 
analytical study on fatigue life of tethers. 
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