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Abstract: A simplified version of differential analysis for smooth functions ¢(X) of a hermitian matrix variable
X with an increment A in an n-dimensional matrix manifold, M., is established by proving the representation

Dxp(X)(A) = D5p(X)(A) + [p(X), Aal, (D)

where Dy - (A) denotes the Fréchet derivative with an increment A of X, DS - (A°) the projection of D - (A)
onto the commutative submanifold of Dx - (A4), and A4 a skew-symmetric matrix which depends only on A but
independent of ¢ in the commutator [¢(X),-]. As an application, we discuss the monotone Riemannian metrics,
in particular, quantum Fisher information and generalized relative entropy.

Key-Words: Fréchet differentiation, quantum Fisher information, monotonicity, convex operator function, quasi-

entropy, additivity vs nonadditivity.

1 Introduction

Since around 1996, considerable efforts have been
placed on studies of linear algebra and applications
to put a systematic formulation. of matrix analysis
i.e. differential analysis with a matrix-valued vari-
able X(here, it is restricted to hermitian) and its
real, smooth functions ¢(X) which is also matrix-
valued. (Readers are referred to Bhatia’s mono-
gragh(1997)[1].) Such a differential analysis was dis-
cussed early in 1980 by Flett in another monograph[2]
by means of Fréchet differentiations. An elementary
definition of Fréchet differential of a function ¢(X) is
as follows.

Dx(p(X))(4) = lim #X ) —#)

. t—0 t

for any A € M,, under the satisfaction TrA = 0: The
hermitian subspace of M? with property TrA = 0
is called, from a geometrical motivation, the tangent
space of (X ) at X denoted by Tx M. We shall
show in the sequel(Sec.2) that a combination of
the concept derivation in operator algebras and the
Fréchet derivative gives rise to a new standpoint of
noncommutative differential analysis, as indicated by
(D) in the abstract.

(1.1)

In 1996, Petz proposed a new approach to
geometrical studies of information theory by the

name of monotone metrics in the framework of linear
algebra and applications, which revised the classical
Fisher information developed by Chentzov[3] and
Amari[4] during 1970-1980’s. Chentzov aimed to
extend his result to noncommutative manifolds which
was inherited to Morozova(his spouth) in the form of
a paper by Morozova and Chentzov[5].

A remarkable feature disclosed by Morozova-
Chentzov and Petz[6] was that, unlike the classical in-
formation geometry where the monotonicity on met-
rics fixes the object uniquely that is the Fisher infor-
mation, whereas a variety of Fisher type metrics may
exist that are defined on matrix spaces, if the only con-
dition of monotonicity is imposed on the metrics.

The prediction of Morozova-Chentzov and Petz
on noncommutative information metrics received a
revised interest in geometrical aspect of information
theory, called now quantum information geometry,
whose basis can be seen to stem from the noncom-
mutative differential formula (D). It can be realized
that the skew information, first arose in the decade
of 1960-1970 thanks to Wigner-Yanase-Dyson[7]
and to Lieb[8], can be understood transparently only
by using this formula, which will be discussed in
Sec.3 based on Hasegawa[9] with theAppendix. It is
shown in Sec.4 that the partial-derivative version of




on Hasegawa[9] with theAppendix. It is shown
in Sec.4 that the partial-derivative version of
(D) yields the framework that is quite parallel to
the cllassical information geometry[4].

Another aspect worth to be discussed is the
relationship between the information metrics and
the relative entropy. This subject was first pur-
sued by Amari[4] by the name of a-divergence(its
quantum version by Petz[12] and Hasegawa[13]).
The relation has another context which arose in
the decade of 1990 to the community of statis-
tical physics for the aspect of the nonextensive
generalization of Gibbs entropy, first pointed out
by Tsallis[19]. We reconsider the Lesniewski-
Ruskai theorem[14] in Sec.5 to verify the general
extensivity of monotone metrics with formula (D).

The present article will continue to the second
version II, where detailed proofs of the charac-
terization theorem for the Wigner-Yanase-Dyson
metrics and for the a-divergence are given; also,
all references throughout are at the end of II.

2 Derivation and Fréchet differ-
entiation

2.1 Lemma on derivation of analytic
functions of a hermition variable X

dip(X) = ' (X)d°X + [p(X), Ay] (2.1)

under the hypothesis
dX =d°X + [X,A4], where (2.2)

d°X € Cx ={Y € M, }; Y, X] = 0}.

The above writing dp(X) = d°p(X) + [p(X), Ay
is an orthogonal decomposition of the derivation
dp = d°¢ + dto in which A, = A for X that is
irrespective of @: A, = A holds.

proof. Let ¢(z) denote a holomorphic func-
tion(we say simply an analytic function here-
after) defined on the complex z-plane. In writing
(X)) (which we call “analytic function of X), it
can be regarded as a C* function on Myp;n € 1.
Its 1st order derivation, which is shown to arise
in a contour integration of the resolvent for X i.e.
(z—X)! to compute (X +dX) — ¢(X), where
the contour I' encircles the spectrum of X which
lies on the real axis so that ¢(X) = [p %(—%}'—if. It
gives rise to the above decomposition as follows.

P(X +dX) — p(X) =
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./r (z—— (?((iz ax) z@—(z;(> _2%%

1 1 p(z)dz
= X
-/I‘(Z-—Xd z—X) 27

+0(dX)?,

dX = d°X + [X,A4] is inserted. The first term
yields, since d°X commutes with X,

to which

/p (z —1X)2 SD(;?? =¢/(X)d°X, (2.3)

and the second term

1 1 (2)dz
X, Ax]
/]"Z—-X{ SXTTX Tom

showing that the structure of decomposition is in-
herited from dX to dp without any modification
of the skew-symmetric matrix A 4 i.e. common to
all the analytic functions ¢. This decomposition
is shown to be an othogonal decomposition of the
Hilbert-Schmidt type, as Trd®o(X)[p(X), A4l =
0 by virtue of d°p(X) € Cx i.e. it commutes with
o(X). end of proof.

Remark 1. Tangent space at a fixed value
of X is denoted by Ty M = {A € M" TrA =
0}, dimTx M,, = n?—1. The subset of all analytic
functions of X denoted by Ax constititute a
commutative subalgebra in Tx M. An element
of Tx M,, denoted by A, B, .. is called a tangent
vector: this is shown to be related to Aa, Ap, ..
in derivation(2.2) in Sec. 2.2 below.

Remark 2. Definition of Commutant associated
with X: Cx = {Y € M,;[X,Y] = 0}. Thus,
Clc(p(X) € Cx, and TxAx C Cx C T'x M, holds.

Remark 3. A Fréchet derivative
Dx (p(X))(A) = limgo BEHD=EX) eq(1.1)
satisfies
(X 4 h) = p(X) ~ Dx(p(X))(h) |
h—0 | Al

for any h € Tx My (2]

=0

2.2 Two kinds of a tangent vector A
and A —the representation(D)

[X,AA]:A, AeTxyMand Ay € Txo.
We can express the map of the nonparametric
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tangent space to a parametrized tangent space
with eigenvalues and matrix elements, which is
denoted by ¢ o [11], as

A AA, where X = Zz )\ieii; A= Zi#]’ Az-jeij

Ay = Z: y :JAJ eij € Txo op C Tx M. (25)
i#]

Then, together with A¢ = diagA € Cy,
Dx(p(X))(A) = D5 p(X)(A°) + [p(X), As]

which establishes the aimed representation (D).

3 Monotone metrics on matrix
SpacCeS—nonparametric version of
quantum information geometry

3.1 Axiomatic approach of Morozova-
Chentsov and Petz

These authors initiated Riemannian metric for-
mulation for noncommutative geometry on ma-
trix spaces as K(B,A) = TrB*K(A). Our con-
cern hereafter with matrix variable X is a density
matrix denoted by p by which quantum expecta-
tion can be made: in the present context we make
a strong assumption of positive definite p € M+
to satisfy the following.

(a) (A4,B) — K,(A,B) or, in a bracket form
(A, K,B), is sesquilinear

(b) K,(A, A) > 0 and the equality holds if and
onlyif A=0

(c) p— K,(A, A) is continuous on M (all n x n
positive matrices) for every fixed A

(d) monotonicity condition:
Kp)(T(A), T(A)) < K, (A, A) for every
stochastic map 7'(linear, completely positive
and trace preserving) M, (C) — Mn,(C),
TMy, C My, and for every p € M;}*(all
n X n positiv definite matrices) and 4 € M2,

Instead of condition(d) we could require the
weaker condition(Chentsov’s Markovian in-
variance)

(d') Ky (U*AU,U*AU) = K, (A, A).

In the sequel, we always consider the symmetric
case of the sesquilinear form

1
A, B € M. (all n x n hermitians), (3.1)
the prime being dropped for K,(A, B) hereafter.

By taking the p-diagonalized basis, it can be ex-
pressed in terms of a two-variable function c¢(\, p)
on RT x R™ and a single variable one c¢()\) =
c(A, A)(= 1/ that identifies the Fisher term; The-
orem 3.1 below) in the above bilinear form as

KP(B7A) =
D c(M)Badi+2) c(hi, \)BAi;  (3.2)
A 1<J

c(p, A) = c(A, p). (3:3)

3.2 Extended Chentsov theorem for
noncommutative manifolds— MC
function c¢()\, ) and reprentation
function f(z)

Theorem 3.1(Morozova-Chentsov[5)).

Suppose that(a),(b),(c)and(d )hold for a real, bi-
linear form K,(A, B) on self-adjoint elements in
M. Then, Morozova-Chentsov function ( MC-
function) to represent the symmetric monotone
metric K,(A, B) satisfies:

(i) e¢(A), e\, w)(=clu,N) are continuous, posi-
tive functions

(i) tmy,yc(Ap) = c¢(A) = A7, ¢ = 1 (the
Fisher term of the metric)

(i) ¢(X, 1) is homogeneous of order -1 in A and u,
implying c(tA, tp) = t~tc(\, u) for any t > 0.

Petz’s representation of a symmetric
monotone metric

A positive function is operator monotone, if
f(z); Mt — RT; satisfies that for any z,y,
z < y implies f(z) < f(y). The corresponding
symmetric monotone metric can be expressed as

K,(4,B) = (AR,Y?f(L,R;") "' R;Y?B), (3.4)

where LpR;lA = pAp~? in term of left vs right
multiplication operator, respectively, defined by

L,(A)=pA, R,(A) = Ap. (3.5)

Theorem 3.2 (Petz [6]).

There exists a one-to-one correspondence between
the MC function c(X, p) subject to (i),(ii),(iii)
Jor a symmetric monotone metric K,(A, B) and
a metric-characterizing function f(z); f(1) = 1
with monotonicity as follows.




the relation between MC and f functions

. 1
1
ii) ¢(\, ) = ——~—, with symmetry
W)= LT

i) e(p,A) = (A, p) & zf(a7") = f(2),
and every normalized (f(1) = 1) symmetric
monotone function f(z) lies in a narrow range as
1+z

———é——(minimum) > f(z) > %(maximum).

Note that mini-mazx corresponds to the minimum
vs maximum metric: the monotone metrics are in-
versely proportional to the f-functions, motivated
by the theory of positive operator means|[10].

3.3 Concrete examples of symmetric
monotone metrics

the Wigner-Yanase-Dyson metrics

The original definition of the skew informa-
tion was —2Tr[p'/2, k]?(Wigner-Yanase[7]), where
Dyson suggested that it could be generalized to
the one exponent ¥ and the other 1 — ¥ for the
power of p. Lieb, in proving thisWigner-Yanase-
Dyson(WYD) conjecture[8], expressed it as

I(p, A) = ¢ x Te[p?, Al[p' 77, A] (-1 < p < 2)
A € {skew hermitians}, i.e.iA € M.  (3.6)

It can be shown that this form is added to the
classical Fisher term to yield a full metric form in
terms of a Fréchet differential denoted by D,-(A):

A=A+ [p,A4); TrA%GF A+ Li(p, An),

— 1 . 1—p

= SRR ADA TN, (BT
where the factor [p(1 — p)]™! is to normalize
the form so that in the commutative limit it
agrees with the Fisher term p~!. Thus, the
quantum correspondent to the Fisher term shows
a structure, which could be derived from the
corresponding quantum divergence(Sec.5).

Another remark is the origin of “a” in the
a-divergence. This stems from Amari’s device[4].

1 -
= —;a, l-p= = 5 <, Eq.(3.7) changes to
4 1t i—a
K(4, B) = 1= TeD, (5" ) (A)D, (o' T )(B)

(p > 1 — pduality becomes =+ aduality). (3.8)
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Theorem 3.3(Hasegawal9]).

The Wigner-Yanase-Dyson information is a sym-
metric monotone metric defined on matriz spaces.
Conversely, if a metric is defined on matric
spaces of the form in terms of a pair (v,X),
TrD,p(p)(A)Dpx(p)(B), and is monotone with
respect to stochstic maps to satisfy (d), then the
resulting MC-function is given by

(e(N) = () (x(A) = x(w))
(A= u)? ’

where the product ¢(z)x(z) at z — 0+ is 0, and
it s identical to one of the WYD metrics.

c(A, ) =

(3.9)

Its representing function is given by

1—a? (1-z)2 N 7& .
fivyp() = { 41 (1-“”'1—?‘)(1—:31_753) o]
T%:g:; |O£| = 1.
(Flep<2e0<io<y) (3.10)

The power-mean metrics There exists an-
other region of forbiddenness which we may call
“gap region”, that is, the maximum of the fwyp-
functions having @ = 0 and the fpyres = l%E(the
Bures metric) was found to be unfilled by any
fwyp(Hasegawa[9]): a possible interpolation to
fill this gap is
1/v\Y
v (z) = (1____+$ ! ) (1<v<2). (3.11)

power 2

Let us denote the set of all the f functions in
Theorem 3.2 by F. Similarly, {fpower} = Fpower
and{fwyp} = Fwyp. Then, the combination of
Fpower and Fyyy p forms a linearly ordered subset
of F in the sense that for an order of two param-
etersets 1 <w; <1y <2;0< || <oz <3, a
series of inequalities

fmam(: fB'wr'es) > f;&wer = ;I;gwe?" 2
f¥D 2 Fp = firyp = fmin holds[9]  (3.12)

(Fig.1 in the Appendix).

4  Parametrization of matrix
manifolds
—Fréchet partial derivatives
In the classical framework of information geome-
try, one deals with a manifold in the parameter

soace §({0;;i = 1,2,..,7}), in which all variables
are assumed to be commutative to each other.




Nevertheless, one observes that “noncommutativity”
arises in the theory(see, recent monograph by Amari
and Nagaoka[4]), because the concept of vector field
appears as an important ingredient so that a basic com-
mutation rule exists. Namely,

[81,6”'} = 557
i=1,.,r (4.1)

[0;,05] = 0,

where 0; =

[017 9]} :807
o6
Here, we discuss briefly how the above noncommuta-
tivity can be incorporated without loosing consistency
into the present “quantum information geometry”. For
this purpose we extend the foregoing nonparamet-
ric version to that for parametrized matrix manifold,
where every density matrix is looked as an analytic
function of {6} to form a manifold. We proceed to
redefining tangent vector introduced in Sec.2 to con-
form to the definition in classical geometry: we sketch
the essence in two propositions as follows.

4.1 Propositions for parametrizing
steps

Proposition 4.1. Let T,M! — R™(m < n® —
1)denote the derivative map of the tangent space
Tp/\/lh expressed as ¢ o p[11](¢ to symbolize the
parametrization). There exists a set of linear indepen-
dent matrix vectors {A g, }i = 1,..,m € Tpop C
T ,,Mh by which a tangent vector of classical geome-
try can be given by a derivative map of projection of
T,M" onto T, A, as(cf. Remark 1 and 2, Sec.2 for
definitions.)

9ip(p(0)) = Dgip(p(0)))(As)

ac
= 2242+ [p(p), Aaliby (4.2)

6
Proj(De: ) TpMp = TpA,. (4.3)

This generalizes a classically defined tangent vector
in the sense that, when the tangent space at a fixed p,
T,M", is identical to T,A,, d;¢(p(6)) reduces to the
first term 0°p/06"; partial-derivative version of (D).

Proposition 4.2. In the parametrized tangent
space at a fixed p, there exist m linearly independent
tangent vectors 0; = Of + |-, A ] that form a natural
basis of a vector field defined by p — X, = X'0; in
terms of A, functions

Xi(p) € Ap, for all i which satisfy

0X;
(X, X5] =0, [0:,05] = 0; !

(4.4)

[&-,Xj] = 20 S .Ap.
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Remark 4. The first and second commutativities are
due to the definition of the set A, C C, and the tor-
sionless property of the Fréchet differentials[2], re-
spectively. By virtue of these facts, commutation re-
lations among a set of vector fields at a fixed p can
be described as if it were in the commutative frame-
work(although this no more holds, if one goes outside
T,A,).

4.2 Application to monotone metrics

We compare the two representations of the noncomu-
tative differential in eqs.(2.6) and (4.2), nonparametric
vs parametric versions, for a pair of analytic functions
()

Dy(p(p))(A) = Doo(p)(A°) + [p(p), Aal;  (4.5)

Biplpl0))(A) = TL AT+ [p(p), Aa)y (45)

and a similar comparison for D,(x)(p)(B) vs
O;p(p(6))(B). The former expression yields the in-
formation metric of the Morozova-Chenzov and Petz
form

K,(A,B) = (A~ B°) + Tr[p(p), Aallx(p), AB]

in accordance with Theorem 3.3, whereas the latter
expression yields

K(A, B)ij = (Afp™'0;p0;pB;)

+Tr([0(p), Aallx(p), AB,)) (4.7)

which is in parallel with the classical expression apart
from the presence of noncommutative part.

5 Operator convex functions
and quasi-entropy

An important aspect of the classical information ge-
ometry is that the Fisher information is an object
which is derived from relative entropy. In quantum
case, this subject was studied by Petz[12] by the name
of quasi-entropy. The direct derivation of the WYD
metrics from the noncommutative a-divergence was
by Hasegawa[13]. Here, we present a comprehensive
discussion.

5.1 Representations and general
properties of quasi-entropy

We consider an operator function of a pair of den-
sity matrices p,o (both invertible and Trp,o = 1) in
terms of an operator convex function g(z);z € R™,
and satisfies g(1) =0 (See Fig.2A and 2B).



Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp219-226)

Theorem 5.1(Lesniewski-Ruskai[14]).

The quasi-entropy on finite quam‘um states

Sy(p,0) = (p?g(L, R;Y)p 12y admits a general
representation in terms of the above g(z):

@(LoR DRy (o = p),
g(m)

(z— 1)’
( e

Sg(ﬁ),a) =
where g( )( )
9(w) =b(z —1)° +
00 (m _ 1\2
+/ (_:c__l)_dm(s),with two constants  (5.2)
0

T+ s
b, c > 0 and a finite measure m defined on (0, o).

Tr(o — p)g

and

General properties of Sq(p, o) are as follows.

(@) Sg¢(p,0) > 0, and the equality holds if and only
ifo=p byg(l)=0

(b) Sy(tp,to) = tSe(p,o); t > 0 (homogenuity of
order 1 with respect jointly to p and o)

(©) S¢(Tp,To) < Sq(p,o) with every completely,
trace preserving(i.e. stochastic) map 7'. Equiva-
lently, Sy(p, o) is jointly convex in p and o.

(d) Sg(p, o) is Fréchet differentiable with respect in-
dependently to p and o.

5.2 Quasi-entropy of selfdual and
non-selfdual classes

Let g% (z) denote the function zg(z~!), and then
Sgauat(p,0) = Sg(a, p) holds. Taking the

dual of the representation (5.2), we have

(z 1)2

el () = wg(a) = c(w = 1)* + b

+/ (az—l / dm(s 0,
0 x4+ 8

m(s) = sm(1/s). (5.3)

g

where

Theorem 5.2(Lesniewski-Ruskai[14]).

There exists one-to-one correspondence between
a monotone metric K, with operator-monotone
decrasing function which is denoted by k(x)(=

1/f(z)Sec.3), and a symmetrized quasi-entropy
Sg(p, o) + Syauat(p, @), which is written as
g(z) + g% (z)
k) ="———"—~* 5.4

for the monotone metric, i.e.

K,(A,B) = —DyD,S4(p,0)(A, B)|lo=p
= (A, R;'k(LaR;")(B)), (5.5)
= Sy(0, p) holds.

Let Gsym and Gqsym denote the set of all quasi-entropy
g-functions z € Rt — R™, defined for symmetric
and asymmetric class, respectively, by

GSyTI"L - {g,g(ﬂ)) = gdual(m)},
= {g;9(z) # g™ (2)}. (5.6)

Definition 5.1: selfdual/non-selfdual class

where Sgaai (0, 0)

gasym

(1)Selfdual class: S5 guai(p,0) = Ss.dual(0, p) with a
symmetric g € Gsym. In terms of the measure
representation (5.2), (5.3), both b = ¢ and m(s) =
m(s) hold.

(2)Non-selfdual class: Sps.dual(p, 0) # Sns.dual(0,
p) with an asymmetric g € Gasym.

Definition 5.2: equivalent class of a pair
(p(z), x(z)) (Gibilisco and Isola[15]). A pair of
functions (p(z) = Apo(z)+B, x(z) = Cxo(z)+D)
conditioned by AC' = 1 is said to be an equiva-
lent class. Then, the WYD metrics are characterized
by the equivalent class of a pair of power functions
(zP,z'7P); —1 < p < 2 called dual pair.

A typical example of selfdual and non-selfdual
class for quasi-entropy is that of Bures metric and
of WYD metric o # 0, respectively, given by

(1)

gBures(m) = 112 S gsym, (57)
a 4 1ta
Grvo(e) = pule) = —p(1-2"5) (59

€ Gasym, satisfying (1) =1, and

ol (z) = (@—z7).  (59)

1—-a?
Quasi-entropy for the power-mean metrics
(Fig.2A)

2" 11— x)?

sym; 1 < v < 2
(1+zl/v)v € ey Y

ngO’u}ET (ZL‘) -

Sgv(p,0) = Sgv(0,p) = chTra"/"pl_”/” (5.10)

n
with unit radius of convergence. This is an infinite
sum of trace functions, each being of the form o? pl“P

(operator dual pair). Forv =1, Sgg. ..(p,0)
——ZTr — Lo R, )?(a,0) p' "
(1= LoR,Y)(o,p) =1=20p" " +0%p?).

There is no member of G,sym, in the gap region.



Quasi-entropy for the WYD metrics
(Fig.2B)
4o

1
For a # +1, go(z) = 25(1 - 277 )

4 1ta l-a
Sga(p,d) = 1 — a2 (1 — Tro™ p 2 )a (511)
—logz a=-1
f =
and for o = 1 { zlogz o =1, obtainable
from two limits for & — —1 i.e.
limga(z) = —logz;  lim g% (z) = zloga:

the metric is called BKM(Bogoliubov-Kubo-
Mori)[23], for which the quasi-entropy is

(5.12)
Sg1(p,0) = Tro(log o —log p) (Umegaki entropy).

Sg_1(p,0) = Trp(logp — logo) and

5.3 Lesniewski-Ruskai theorem by the
second Fréchet derivative

In this section we establish another basic property
of the information metric form expressed in terms
of second derivative of the quasi-entropy.

Theorem 5.3(Jencovd-Hasegawal[27])
Lesniewski-Ruskai formula in Theorem 5.2 can be
added by another expression for the Riemannian
metric as follows.

D/%Sg(Pa U)[U:p<Au B) =
_DpDaSg<P= U)ld:p(A: B) = Kp(Aa B)
where

Se(p,0 = Tr(p — o) R, ¢ (LR, (p — o)

(5.13)

9(z)
AL 5.14
It implies that the first part of eq.(5.13) can be
verified by the Lesniewski-Ruskai formula(5.4).
Here, we prove both equalities on equal footing.

with ¢ (z) =

proof. We may assume that the function g(*(z)
in eq.(5.1) is analytic in the unit circle of a com-
plex plane except z € (0,1) which can be ex-
panded as a power series of zP with unit conver-
gence radius, or more generally, a linear combi-
nation of such series with different p’s: then we
consider its prototype form

¢ (z) = Z e (0<p <1 ¢, €R).

n=0
The linear operation R, 'g(® (L, R, ") can be writ-
ten as for any X € M"

R;lg(Z) (LO—R;l>X — z Cno-’anp“an1
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in accordance with the prescription of the left-
right multiplication operator L,R;* (3.5). By
taking X = p — o € M, we have

Sg(p, 0) =

Tr(p — o) i cno?™ (1 —cop™H)p P (5.15)

n=0

This expression applies to the pertinent cases, as
can be seen from egs.(5.10) and (5.11), respec-
tively. Then, we can proceed to twice Fréchet
differentiations on Sy(p, o). We may use two ele-
mentary derivative formulas[1}, namely,

i) Dy(o)(A) = 4
i) Dy(p)(B) = —p~'Bp™! (4, B € My).

—D,D, operation on Sy(p,0) in eq.(5.15).

Two differentiations D, and D, can be made by
simple setting p — o = A for D,(-)(A), and o —
p = B for D,(-)(B), respectively, according to i),
because the subsequent setting o = p makes any
derivatives other than on these two (p — o)’s to
vanish. Therefore,

—DpDoTr(p—0) 3 cao™ (1= op™")p™"(A, B)
n=0

= (A, Z cnoP"Bp~! - p7P") by definition

n=0
of Ly, Ry" in eq.(3.5), and setting o = p,
= (A, R;'g®(L,R;")B) = K°(A, B).
This identifies the latter half of eq.(5.13).

(5.16)

Dg operation on Sy(p,o) in eq.(5.15).

The first operation D,(-)(A) on Sy(p,0) = Tr(p—
0)9 (Lo R;1)(1—0p~?) is as before, but the sec-
ond operation D,(-)(B) requires that it be oper-
ated on (1 —op™!).  Accordingly,

D;84(p,0)(4,B) =

DAY ena™(1— ap™)oP)(B) + Ol — )

n=0

= (4, cao™(op™"Bp~)p™P") by using ii)
n=0
= (4, ) o™ (op™ B)p "))
_ n=0
(A, R 1g®(L,R;1)B). (5.17)

This establises the major relation in eq.(5.13).
end of proof.
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5.4 Nonextensive vs extensive characteristics
of the quasi-(or, relative) entropy and the
monotone metric

There has been a new trend in statistical mechan-
ics community, namely nonextensive generalization of
Boltzmann-Gibbs entropy initiated by Tsallis[19]. We
see a connection between this and Information Ge-
ometry via divergence functions. See, for example,
papers by Abe[20][21] who discusses non-additive
generalization of the Kullback-Leibler divergence,
where this divergence is an additive(extensive) object,
whereas nonzero-¢ modified divergence is nonaddi-
tive. We show a general proof that the information
metrics retain the additivity[25]. The following argu-
ment based on [26] is an application of the foregoing
Theorem 5.3:

Ky(A,B) = (4, e Bp ™), (5.18)

n=0

with 0 < p < 1 and unit convergent radius.

Appendix
the gap region

1

1

This shows that each term of the series is of the
form Tr(ApP"Bp™P"~ 1) and, as A = [p,A4]; B =
[p, Ag], linear combinations of Tr(p¢Aap? 9AR).
We can prove that this satisfies additivity, and then
the series itself:

Te(p?Aap'™9Ag) = TrM (pMIA 40 pM DA g

+Tr2) (p(2)qAA(2)p(2)(1~Q)AB(2) (5.19)
with p=pM @ p® (Trp® =1;4 =1, 2) and
Aa=0,001%0 + 1M @A ). (5.20)

( A more detail will be shown in a WSEAS journal.)
It verifies the expected general additivity for the sym-
metric monotone metrics, provided the power-series
expansion(5.18) holds. The WYD metric provides its
typical example.
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