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1   Introduction 
Many problems in structural dynamics deal with 
stabilizing the elastic energy of partial differential 
equations by boundary or internal energy dissipative 
controllers for wave equations or the Euler-
Bernoulli beam equation [1-3]. Exponential stability 
is a very desirable property for such elastic systems. 
In this study stability of a system of wave equations 
coupled in parallel with distributed viscous damping 
and springs [1] is revisited. What comes new in this 
work is to find an analytical solution for the system 
(1), below, via Adomian Decomposition Method 
(ADM) [4-7]. 
This paper is organized as follows: In the present 
section, Section. 1, the equation of coupled wave 
system is given, and some basic knowledge of 
spectral method and ADM are presented, 
respectively.  In Section 2, the application of these 
methods will be utilized to study the stability of the 
system due to solution of the system (1-3), see Eq. 
(1) below.  In Section 3, the numerical computation 
of this system will be discussed followed by 
conclusion. 
 
1.1   Coupled wave system in one dimension 
The following governing equation is under 
consideration: 
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along with prescribed Dirichlet boundary conditions, 
(3)( ).,0,0vu ∞×∂== Ωon       

Here, )1,0(21 === ΩΩΩ  are open sets. Let 

21 , ΩΩ ∂∂   be the boundaries of 1Ω  and 2Ω , 
respectively. The coupling constants 0>β  and 

0l >  are damping and spring coefficients, 
respectively. We assume that the projection of 1Ω  
into 2Ω , denotes asΩ . Also, ( )t,xu  and ( )t,xv  are 
the displacements of two vibrating strings measured 
from their equilibrium position, and 1c , 2c  are wave 
propagation speeds. The distributed springs and 
dampers linking two vibrating springs are the 
coupling terms; that is, ( )vul −  and ( )tt vu −β . 
Energy can flow from one object to another through 
this parameter ( )l  and damp via shock 
absorber ( )β . Also )t,x(u  and )t,x(v  are the 
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displacement of two vibrating strings measured from 
their equilibrium positions. 
 
1.2   Spectral Method 
Separation of variables is a valuable tool when there 
are time derivatives. It is rather direct method for 
our analysis since the part involving time is only an 
exponential. For the heat equation, it is a decay te λ− , 
and for the wave equation it is an oscillation iwte− . 
The key is to find the eigenvectors since they solve 
the time–dependent problem by combining 
with te λ− , or iwte−  into pure exponential solutions. 
For partial differential equations, they are 

eigenfunctions. The term 2
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periodic case, and 2
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x∂
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sin 2)k()kx( ππ −=  

sin )kx(π , for zero boundary conditions. The 
separated solutions, )x()t( Φφ , can be written 
down immediately. The heat equation has decaying 
solutions Φλte− , the wave equation has oscillating 
solutions Φiwte  and Φiwte− . The eigenvalues 

2w−=− λ  have eigenfunctions −Φ , one for each 
frequency k . The solutions to wave equations are 
combinations of these exponential solutions. For 
example, 

).x()kdkc(u k
tiw

k
tiw

k ee Φ−+∑  
What is unique about this approach is that it may be 
generalized so that any infinite series of smooth, and 
preferably, orthogonal functions may be used to 
eliminate the physical space variable from the 
problem and reduce the solutions of the partial 
differential equations to the solution of a set of 
ordinary differential equations in the other 
independent variable, time. Because of their close 
association with the Fourier series, the expansion 
coefficients are referred to as spectra and this 
approach is called the spectral method. 
 
1.3   Basics of ADM  
The ADM consists of splitting the given equation 
into linear and nonlinear parts. Then the inverse of 
the highest-order derivative operator, usually, 
contained in the linear operator, is applied to the 
both sides of the given equation. The process is 
followed by decomposing the unknown function 
into a series whose components are to be 
determined. Decomposing of the nonlinear part in 

terms of the so-called Adomian polynomials is the 
essential part of ADM. Recurrent relation using 
Adomian’s polynomials finds the successive terms 
of the series solution. This method, usually, starts 
with a general equation ( )tgFu = . Where F 
represents a general nonlinear operator, which could 
be decomposed into linear and nonlinear operators. 
Further decomposition of the linear term leads to 

RuLu + , where L is the highest order derivative 
operator and R is the reminder of the linear operator. 
Thus, the equation may be rewritten in the form, 

(4),gNuRuLu =++  

where N is a nonlinear operator. Solving for Lu, 
gives, 

(5).NuRugLu −−=  

Applying inverse of L on both sides, the equation (5) 
can be written as, 

(6) .NuLRuLgLLuL 1111 −−−− −−=  

Where 1L−  indicates the inverse of the highest order 
operator L. For example if L is considered to be a 
second order derivative operator in t, then 1L−  is a 
twofold linear integral operator. Hence (6) becomes, 

(7) ,111
0 NuLRuLgLuu −−− −−+=  

where 0u  is yet to be calculated.  By ADM, u and 
the nonlinear term, Nu, are decomposed to: 
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respectively, where Adomian polynomials, nA , are 
used to compute nonlinear terms and are calculated 
by the following relation [4], By substituting (8) and 
(9) into (7), one can get, 
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The above equation is rewritten, according to ADM 
[4], in the form of a set of following recursive 
relations, 
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Where 0u  can be obtained by prescribed 
initial/boundary conditions and consequently all of 
the nu  will be calculable. The k-term approximation 
can be used as a practical solution, as: 
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and if more accuracy is desirable, more terms of the 
approximation should be utilized. So, 
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Hereafter, ADM is applied to the following system 
of wave equations; see Eqs. (1-3), 
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Rewriting the system in the operator form, as in (4), 
yields 
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Here tL  and xL  are operators in t and x, 

respectively. The inverse operator 1
tL−  is a two-fold 

integration represented by ( ) ( )∫ ∫=− t

0
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Applying the operator 1
tL−  on (16), analogous Eqs. 

(4-7), one gets 
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The first two terms in (17) are constants of 
integration, which can be calculated by (15). By 
(13), )t,x(u  and )t,x(v  are decomposed to, 
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Also, the nonlinear terms )v,u(N1  and )v,u(N 2  
are decomposed into infinite series by use of 
Adomian polynomials, 
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The Adomian polynomials nA  and nB  can be 
calculated by [2], Introducing (18) and (19) into 
(17); gives 
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Now, according to ADM, the system of equations in 
(20) is transformed into a set of recursive relations 
given by, 
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and similarly, 

(22)

.0nBL

)v,u(RLvLL)t,x(v

),x(gL)x(t)x()t,x(v

1
t

nn2
1

tnx
1

t1n

2
1

t210

≥−

−=

++=

−

−−
+

−

 ,n

σσ

 

The (k+1)-term approximant solutions for u and v 
can be determined respectively by,  
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=
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Finally, there appears a power series solution, in 
some cases a closed form solution is at hand by 
summing up the power series, 
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2   Application of Spectral Method and 
ADM  
Having considered the above two methods, we are 
now in a position to pose the following theorem, 
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which is necessary in studying the rate of 
convergence of the system: 
Theorem. System (1-3);   

(a) Decays strongly if 21 cc ≠ ; that is, the 
system is stable. 

(b) The stability of the system fails if 21 cc =  
with identical initial conditions. 

Proof of (a) (stability via spectral method): let 
{ }n,...,1i,x0x i

n =<<ℜ∈ πΩ . Then the 
following solutions satisfy the system (1-3): 
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Introducing (25) into (1), one obtains the system of 
differential equations in φ  and υ/  with respect to 
time t  as follows: 
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System (26) can be written as a system of first – 
order ordinary differential equations: 

(27),XX wΑ=&  
where 

 [ ] ,
0

,,,,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=Α//=
BA

I
X

w

w
T

υφυφ &&

 
and 

 .,
2
2

2
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−
=

ββ

ββ
B

wl

lw
Aw

 
The characteristic polynomial of the matrix wΑ  is 
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Completion of Proof of (a) (asymptotic behavior of  
the solutions) 21 cc ≠ : 
Consider the characteristic equation in the following 
factored form: 
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To find values for x,y, and z, we should equate the 
coefficients of the like powers in s  of (28) and (29), 
so that the following system of equations can be 
solved in terms of x, y, and z: 
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Solution to the system (30) is as follows: 
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Eq. (31) can be expressed as 
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We will notice from (32) that every eigenvalue of 

wΑ  has 
2
β

−  as a negative real part, since 

(33)
( )
∞→λ
λχlim .β=  

Eq. (33) shows that a sequence of solutions to the 
system (1) can be found, which go to equilibrium 
state; that is, as ∞→t , the energy of the system 
E(t) 0→ , see Eq. (51) in Sec. 3.  Hence the system 
is strongly stabilized, and that furnishes the proof of 
part (a) of the theorem. 
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Proof of (b) (instability via application of ADM): 
without loss of generality let ,1l == β  and 

,ccc 21 ==  then system (1) becomes 
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Rewriting Eq. (34) in operator form, as discussed in 
Sec. 1: 
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where tL  and xL  are second order partial 
differential operators in respect to t and x, 
respectively. Now, applying the inversed operator 

tL  to system (37), yields, 
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where 1
tL−  is a two-fold integration in respect to t 

from 0 to t, and first two terms are generated due to 
integrations. After decomposing )t,x(u  and 

),t,x(v  Eq. (38) is rewritten as: 
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Unlike Equations (16) and (17), Eq. (39) is linear, so 
the nonlinear terms, )v,u(Ni , are not appeared, 
therefore Eq. (39) becomes: 
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each of the equations in (40) can be rewritten in a set 
of recursive relations, as follows: 
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Similarly,  
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The (k+1)-term approximant results for u and v can 
be found, respectively as  

(43)
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So, one can find the first term approximation for u 
and v from Equations (41) and (42), respectively as: 

(44)
),x(tf)x(fu)t,x( 2101 +==ϕ  

).x(t)x(v)t,x( 2101 σσψ +==  

The integration constants in (44) are evaluated by 
(35) as follows: 
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Eq. (45) leads to: 

(46)
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By using (41), proceeding terms for nu  are 
evaluated as: 
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Now, considering Eq. (24), Eq. (47) leads to 
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Hence, the closed form of the series solution to the 
system (1), Eq. (48), is as follows: 

(49)
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Where the summation is the Maclaurin series of 
)ctcos(π . Hence Eq. (49) leads to the following 

exact solution: 
(50)( ) ( ) ( ).cossin, ctxtxu ππ=  

Similarly, one can get the exact solution for v(x, t) 
as:  

(51)( ) ( ) ( ).ctcosxsint,xv ππ=  
Equations (50) and (51) represent an oscillatory 
system; that is, as ∞→t , the above system will 
never get to rest; that is, E(t) 0≠ , and hence the 
system is unstable, and that ends the proof of part (b) 
of the theorem. 
 
 
3   Numerical Computation and 
Conclusion 
Another evidence to support our claims in above 
theorem is to deal with the energy of the system as t 
increases.  To this end, according to [1], the energy 

of the system is defined by 
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Now, by introducing (50) and (51) into (52), yields 

(53)( ) .
2

2π
=tE  

Eq. (53) implies that the energy of the system is 
conserved, and consequently when the system 
possesses identical wave speeds as well as identical 
initial conditions, the system is unstable, and that 
confirms the proof of part (b) of the theorem in Sec. 
2. When the system excites with different wave 
propagation speeds, then as time increases, the 
energy of the system (1) gets smaller and eventually 
approaches zero, which satisfies the stability of the 
system and that also confirms the proof of part (a) of 
the theorem. Here in this paper, the analytical 
solution of the system of wave equations, Eq. (1) 
was found by the application of ADM, which 
distinguishes from other regular methods. 
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