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1   Introduction 
Stability is very desirable for an elastic system. The 
energy of system should be evaluated, and if rate of 
energy is negative, the system is stable.  
In this paper, we will investigate the stabilization 
properties of vibrating strings in parallel whose 
energy will be damped out by boundary velocity 
feedback via MADM. The governing equation of 
such a system is described by the following system 
of wave equations (mixed initial – boundary value 
problem); 
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where   0>σ and 0>α .The initial conditions are 
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Here t, x, 1σ  and 2σ  are the time, space variable 
and wave propagation speeds, respectively. the 
variables u, v are the deflections of the strings from 
their equilibrium positions. The wave speed,σ , and 
the spring constant, α, are the system parameters. 
The damping coefficients )2 ,1(0 => iiβ  depend on 
the control devices. These parameters play an 

important role in the physical behavior of the 
system. Generally, this boundary control 
corresponds to a control mechanism which monitors 

tt v  ,u at x=1 or at x=0. This phenomenon takes place 
if the system is exposed to external forces or by 
velocity feedback boundary conditions (Eq. 3). 
This problem is motivated by an analogous problem 
in ordinary differential equations for coupled 
oscillators, and has a potential application in 
oscillation of objects from outside disturbances. 
Associated with each solution of (1) is its total 
natural energy at time t [1]: 
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Adomian decomposition method (ADM) is very 
powerful method to find analytical solutions for 
ODE and PDE [2-7]. ADM solution to mixed 
boundary condition problem (for example Eq. 1) is 
not so straight forward and easily obtainable. 
In this study, modified ADM is utilized to solve the 
system of Eqs. (1). 
 

 
2   Analysis of MADM to linear PDE 
Here, the following linear equation [2] is considered 
as 

, gRuuLuL xt =++  (5) 
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Where 
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By the ADM, the inverse operator of Lx is applied on 
both sides of (5), hence, 
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where ∫ ∫=−
x x

x dxdxL
0 0

1 (.) . Substituting for u, g and ρ 

from (6) into (7), and carry out integrations. Finally 
one can derive at  
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Let 2−→ nn  on the right side of Eq. (8), then Eq. 
(8) becomes: 
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Finally, equating coefficients of like power of x in 
Eq. (9), we derive the recursion formula for the 

coefficient an 
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and for 2≥n , 
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The final solution is given by 
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The "modified decomposition" series solutions have 
been found for initial-value problems by 
incorporating and adapting ideas of the 
decomposition method. The procedure can be further 
generalized by using the double decomposition 
technique [2]. This enables one to treat initial-value 
and boundary-value problems in a similar fashion 
and computationally efficient formulation.For this 
end, using double decomposition, 
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By manipulating Eqs. (10, 11) to fulfill the boundary 
conditions, 
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and for 2n ≥ , 
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Now, we have from Eq’ns. (12) and (13): 
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The next task is to determine the components of c0 
and c1 using Eq. (13). Since the solution u is 
unknown, generally at x=α and x=β, the 
approximant 1m+ϕ  for solution u is used (see Eq. 
17). for this end, we stagger the series: 
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This can be written as: 
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Where, {n/2} is the first integer greater than n/2. 
We now have a different decomposition of u, which 
is suitable for boundary-value problems as: 
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Then, we derive the solution approximation as:  
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and hence, 
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smaller than n/2. 
Obviously, as ∞→m , we have: 
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Therefore, using the approximate 1m+ϕ with  
boundary conditions, we can compute the 
constants )(

0
mc , )(

1
mc , )(

0
ma , and )(

1
ma . Having found 

the coefficients of the Maclaurin series, the final 
approximated solution is obtained (Eq. 17). 
 
 
3   Application MADM to system (1)  
Let us consider the system of coupled wave equation 
(1) with following initial conditions 
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and prescribed boundary conditions  
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Without loss of generally, to compare solutions of 
MADM with finite difference method in [1], we 
assume: 
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The MADM solution using the x partial solution (in 
this system that boundary is mixed, t partial solution 
gives incorrect results because the solution doesn't 
confirm boundary condition) is given by: 
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where 0 1 0, ,c c d  and 1d  are the constant of 
integrations. In order to find 0c and 0d  in Eq. (21), 
we apply boundary conditions, Eq. (20).  
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Having considered Eq. (6), one can find that: 
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Substituting Eq. (22) into Eq. (20), we have: 
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By carrying out integrations and let 2−→ nn , we 
have 
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Following the procedure in preceding section, one 
can derive 
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and for 2≥n  
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Then considering double decomposition, we get 
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and for 2n ≥  
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Now following the preceding section, we use 
boundary condition, Eq. (20), and Eq. (17) to 
compute the constants mc1 and md1 : 
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Consequently, for m=0 we have 
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Now, using Eq. (26), we can evaluate 00   , mm ba . To 
obtain }{},{ 22 vu ϕϕ , substituting the above solution 
into Eq. (27). Similarly, we have  
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where 2k and 2l are constants. Using Eq. (26), we 
have 1
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One can continue this procedure to find .,..., 43 ϕϕ  In 
order to find constants 1+mϕ , ki and li (i=1-2,…, m) 
we apply initial condition, Eq. (19). 
For example, when we compute }v{  ,}u{ 77 ϕϕ , with 
Maple 10, we have 14 constants (ki and li (i=1-7). 
Due to initial conditions in Eq. (19), these constants 
can be found by the expansion of the )sin( xπ , and 
equating the coefficients of like powers of x (4 

equations for u and 4 equations for v), and also, 
similarly, equating )0,}({7 xuφ&  and )0,}({7 xvφ&  
coefficients to zero (3 equations for u and 3 
equations for v).  
Now we use the solution in the energy of the system, 
Eq. (4), for solutions, }{7 uϕ and }{7 vϕ  to investigate 
stability of velocity feedback controllers. The final 
results are shown in Fig. 1, which is very close to the 
finite difference solution in [1]. Obviously with 
more terms in ϕ ( ,... , 98 ϕϕ ) one can obtain better 
confirmation. 
This shows that MADM is strong method to find 
approximate solution analytically without using 
numerical computation. We also conclude from Fig. 
1 that system (1) is stable. 
 
 
4   Conclusions 
We found the approximate solution analytically to 
the coupled wave equations with velocity feedback 
boundary conditions (mixed conditions), using 
MADM. We used Maple 10 to evaluate this 
solution. We then computed the energy of the 
system to investigate the stability of parallel strings 
with velocity feedback. The results are reasonably 
close to the benchmark finite difference data. Thus, 
MADM is a strong approach to solve such problems 
without using numerical techniques. 

 
 

Figure 1. Curve energy (E) VS. t (E solved 
with }{7 uϕ and }{7 vϕ ). 
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