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1   Introduction 
Many problems in structural dynamics deal with 
stabilizing the elastic energy of partial differential 
equations by boundary or internal energy dissipative 
controllers for wave equations or the Euler-
Bernoulli beam equation. In this study stability of a 
system of wave equations coupled in parallel with 
distributed viscous damping and springs [1] is 
revisited.  What comes new in this work is to find an 
analytical solution for the above system of partial 
differential equations through the application of 
ADM [2, 3].  Also, other measures were employed 
to improve the results [4]. 
In the recent years, there has been a great interest in 
ADM.  The Adomian method has been applied to a 
wide class of linear or nonlinear, stochastic or 
deterministic, differential or algebraic and single or 
system of equations [2, 3, 5].  This method solves 
many types of problems without requiring 
linearization, discretization, perturbation or 
unjustified assumptions which may alter the physics 
of the problems.  For a large number of problems, 
the decomposition method has shown reliable results 
in providing analytical approximation that converges 
rapidly [2, 3, 4, 5]. 
 
 
2   Application of Adomian 
Decomposition Method 
The ADM consists of splitting the given equation 
into linear and nonlinear parts.  Then the inverse of 

the highest-order derivative operator, usually, 
contained in the linear operator, is applied to the 
both sides of the given equation.  The process is 
followed by decomposing the unknown function 
into a series whose components are to be 
determined. Decomposing of the nonlinear part in 
terms of the so called Adomian polynomials is the 
essential part of ADM.  The successive terms of the 
series solution are found by recurrent relation using 
Adomian’s polynomials. 
The general form of our problem is: 
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where the two first terms in Eq. (1), Ri(u,v), Ni(u,v) 
and gi(x) are the highest-order derivative operators 
in respect to t and x in Eq. (1), the remainder of 
linear part, the nonlinear part of Eq. (1) and the 
function of variable x, respectively. 
Eq. (1) may be rewritten in the operator form, as 
follows, 
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Here  and  are operators in t and x, 

respectively.  The inverse operator  is a two-fold 
tL xL

1
tL−
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integration represented by . 

Applying the operator  on (3) yields, 
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The first two terms in (4) are constants of integration 
which can be calculated by (2).  
According to ADM, unknown functions u and v are 
decomposed as, 

 (5) 

Also, the nonlinear terms  and  
are decomposed into infinite series by use of 
Adomian polynomials, 

)v,u(N1 )v,u(N2
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The Adomian polynomials  and  can be 
calculated by [7], 
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Introducing (5) and (6) into (4) gives, 
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Now, according to ADM, the system of equations 
(8) is transformed into a set of recursive relations 
given by, 
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The (k+1)-term approximate solutions for u and v 
can be determined respectively by,  
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Finally, the analytical solution can be formed by 
summing up the power series: 

∑
∞
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3   Coupled Wave System in One 
Dimension 
Let )1,0(21 === ΩΩΩ  be open sets in .  
Also, let 

IR

21  , ΩΩ ∂∂  be the boundaries of 1Ω  and 

2Ω , respectively.  The coupling constants 0>β  
and 0>α  are damping and spring coefficients, 
respectively.  We assume that the projection of 1Ω  
into 2Ω , denotes as Ω .  Also,  and ( t,xu ) ( )t,xv  
are the displacements of two vibrating strings 
measured from their equilibrium position. 
The governing equations prescribed the above 
systems are [1]: 
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and we have Dirichlet boundary condition, 
( ,0  on    ,0vu ).= = ×∂ ∞Ω (14) 

Here,  and  are wave propagation speeds, also 
the distributed springs and dampers linking two 
vibrating springs are the coupling terms; that is, 

1c 2c

( )vu −α  and ( )tt vu −β .  Energy can flow from one 
object to another through this parameter ( )α  and 
damp via shock absorber ( )β .  Also  and )t,x(u
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)t,x(v  are the displacement of two vibrating strings 
measured from their equilibrium positions. 
 
 
3.1   Application of ADM in Eq. (12) 
The essence of this paper depends on the following 
theorem. 
Theorem 1, the system (12) along with boundary 
conditions (17) is:  
(a) unstable if the initial and boundary conditions 
and also the system parameters are identical. 
(b) stable if the initial conditions are different, 
regardless of the system parameters.  
 
Proof of (a): without loss of generality let 
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with similar initial conditions, 
,
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and boundary conditions, 
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Rewriting Eq. (15) in operator form as follows, 
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where  and  are second order partial 
differential operators in respect to t and x, 
respectively.  Now, applying the inversed operator 

 to system (18) yields, 
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where  is a two-fold integration.  According to Eq. 
(11), Eq. (19) can be decomposed as follows, 
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Here, Eq. (20) is linear, so the nonlinear terms, 
1,0i  );v,u(Ni = , are not appeared.  Hence, Eq. (7) can 

be ignored.  Now what follows from Eq. (20) is: 
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Each of the equation in (21) can be rewritten in a set of  
the following recursive relations: 
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Similarly, 
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The (k+1)-term approximant results for u and v can 
be found respectively as, 
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use of (24) yields, 
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From Eq. (29), one can reach to the exact solution, 
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Where the summations in right hand side speaks of 
Maclaurin series of )ctcos(π .  Hence  the above 
equation leads to the following exact solution, 
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similarly, one can get the exact solution for v(x,t) as 
follows, 
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Equations (31) and (32) represent an oscillatory 
system, that is as ∞→t , the above system, Eq. (15) 
along with Eqs. (16) and (17), will never get to rest. 
Another evidence to support our first claim (see 
Theorem 1, part (a)) is to deal with the energy of the 
system as t goes to infinity.  According to [1], the 
energy of the system is defined by, 
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Now, by introducing (31) and (32) into (32), one can 
get that, as ∞→t , E(t) will be constant, that is, 
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Proof of (b): without loss of generality, let 
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Eq. (34) implies that the energy of the system is 
conserved, see Fig.1, therefore the proof of part (a) 
of the above theorem is completed. 
 

Fig.1 The energy Eq. (32) versus t, along with 
(16) and (17) is conservative. Theorem 1 part (a).
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y using (22), the proceeding terms for  
evaluated: 
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Similarly, using Eq.(23), the proceeding terms for un 
are, 
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By (24) one can find, 
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similarly, 
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There are variety of choices to improve the radius of 
convergence in (42) and (43). The simplest one is to 
compute more terms, but it is tedious.  Since the 
above system starts with oscillations, an extension to 
ADM is employed.  The use of this extension, 
Aftertreatment (AT) technique, leads to a closed 
form solution [4, 8].  This technique uses Laplace 
transform and Padé approximation [2] which 
approximates a function by ratio of two 
polynomials.  
Due to AT technique, Laplace transform is applied 
to the coefficient of )xsin(π  in equation (42). 
yields, 
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For the sake of simplicity, let ξ/1s = ; then, 
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Now, Eq. (45) is approximated by Padé approximation 
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Now, let s/1=ξ , then Eq. (46) becomes 
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Finally, applying the inverse Laplace transform to (47), 
results to: 

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp62-67)



( ) ( )

.xsin
1

1tsin

1tcoset,xu

2

2

2t

π
π

π

π

⎥
⎥
⎥
⎥

⎦

⎤

⎟
⎠
⎞⎜

⎝
⎛ +

⎟
⎠
⎞⎜

⎝
⎛ +

⎢⎣
⎡ +⎟

⎠
⎞⎜

⎝
⎛ +≅ −

( ) ( )

 (48) 

Similarly, one can also get the approximant solution for 
v(x,t), 
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 (49) 

Therefore the stability claim of the system, (see 
Theorem1 part (b)), is established by introducing 
(48) and (49) into (33) from which the result is 
plotted in Fig.2, and that completes the proof of part 
(b) of the theorem. 
 

 
 
 
4   Conclusion 
The main goal of this work has been achieved by 
studying the stability of wave equations using 
extended Adomian decomposition method and the 
results agree reasonably well with numerical 
computations [1].  It is important to note that, unlike 
common methods e.g., numerical and perturbation, 
this method gives a closed form solution to our 
problem. 
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Fig.2 The energy Eq. (32) versus t, along 
with (36) and (37) decays. Theorem 1, part 
(b). 
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