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Abstract: - In this study, an analytical solution is obtained for the Blasius viscous flow problem, utilizing 
Adomian decomposition method (ADM). A very close agreement between ADM results and corresponding 
numerical ones is apparent. 
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1   Introduction 
Adomian decomposition method [1, 2] is a powerful 
straightforward method. ADM is apt to be utilized as 
an alternative approach to current techniques being 
employed to a wide variety of physical problems. 
Recently, this method has attracted a wide class of 
audiences in all fields of science. 
In this study, ADM is adopted to study the Blasius 
flow. Flow over flat plate was first considered by T. 
Von Kerman in 1921 [3]. He provided an analysis to 
the problem by assuming a simple parabolic 
approximation for velocity profiles. In 1908, 
Blasius, by use of an ingenious coordinate 
transformation, solved the boundary-layer equations 
for laminar flow over a flat plate [3-6]. 
Blasius obtained a single third-order nonlinear 
ordinary differential equation for f, as, 
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It is worthy to note, accurate solutions for Blasius 
equation have been computed only by numerical 
integration [3].   
 
 
2   Basic Method 
Normally, a general equation of the form, ( )tgFu = , 
is decomposed into linear and nonlinear terms. In 
turn, the linear part can be separated further into 
highest order derivative and the remainder of the 

linear terms. Thus the above general equation can be 
represented by, 

(1) .gNuRuLu =++  

where the operators F, L, R, N represent the general 
nonlinear equation, the highest order derivative, the 
remainder of linear terms and the nonlinear part, 
respectively. 
The next step in ADM is solving for Lu and 
applying the inverse operator of L, that is 1−L , on 
both sides of equation. Hence, 
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(3).NuLRuLgLLuL 1111 −−−− −−=  

Let L represents a second order derivative with 
respect to t, so 1−L  will be a twofold integral 
operator. Then (3) yields, 
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Of course,  and )0(u )0(ut ′  terms are the constants of 
the integration. 
Pursuing the ADM procedure [1], the decomposed u 
(5) and the decomposed nonlinear terms (6) are 
introduced into (4). 
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The Adomian polynomials, , are generated by 
[3], 
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The resulting equation is,  
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in which the terms ( ) gLutu 10)0( −+′+  are recognized 
as  which is to be calculated by use of  boundary 
conditions.  

0u

According to Adomian decomposition method, well 
described in [1], the equation is transformed to a set 
of recursive relations given by, 
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Now, all the components of the solution, , are 
calculated (9). The complete solution is 
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But, since the series converges very rapidly, the k-
term approximation can be use as a practical 
solution. 

(10) .ui

1k

0i
k ∑

−

=

=ϕ  

 
 

3   Blasius’ viscous flow equation  
A two dimensional laminar viscous flow past a 
semi-infinite flat plate, is governed by, 
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with the boundary conditions, 
 (12),1)(   ,0)0()0( =∞′=′= fff  

where 
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And η  is a similarity variable, 

(14) .)/( xUy υη ∞=  

The dimensionless function )(ηf  is related to the 
stream function ( yx,

(15) ,/)( ∞= xUf υψη  

where  is the constant velocity of mainstream at 
infinity, 

∞U
υ  is the kinematic viscosity coefficient and 

x, y are two independent variables. For details see 
[6]. 
In 1908, Blasius [8] provided a solution in power 
series, as follows, 
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where )0(f ′′=σ , 
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If the Eq. (16) is expanded, we have, 
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Blasius evaluated σ  by demonstrating another 
approximation of )(ηf at largeη . Then, by means of 
matching two different approximations at a proper 
point, he obtained the numerical result 332.0=σ . 
And in 1938, by means of a numerical technique, 
Howarth [9] gained a more accurate value 

332057.0=σ  utilized to solve Belasius Eq. (11). 
 
 
4   Applying ADM to Blasius equation  
The Blasius equation, (11), is rewritten in the 
operator form, 

(19) .0ff
2
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Where L is a third order derivative with respect to 
η . Solving for Lf , 

(20) .ff
2
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Following the rationale of ADM as in (9), one can 
find, 
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Where 1L−  is three fold integral operator, 
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So, (21) leads to, 
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where the first three terms are constants of 
integration, yet to be determined by employing (12). 
By ADM, f  is decomposed into, 
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The nonlinear term in (23) is decomposed to 
Adomian polynomials, 
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corresponding Adomian polynomials are evaluated 
by (7), 
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Introducing (26) into (23) yields, 
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Eq. (27) can be rewritten as, 
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The required recursive relations take the form of, 
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The approximant solution for f  can be found by, 
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If more accuracy is needed, more terms should be 
calculated. 
To complete the solution, the integration constants 
should be evaluated via boundary conditions (12). 
In this step, let )0(f ′′=σ , where σ  was obtained 
numerically [9]. 
One-term approximation is evaluated via boundary 
conditions, as follows, 
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Then, 
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By using (29), proceeding terms for  are 
calculated, as, 
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So, the approximation solution of )(f η  is, 
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According to Howarth calculation [9], inserting 
332057.0=σ in above equation leads to, 
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Eq. (35) is an approximant solution of Blasius 
problem (11) by ADM. 
The results of 5-, 10-, 15-, 20-term ADM 
approximate solutions for Blasius equation and also, 
its velocity profile and their Runge-Kutta 
counterpart are presented in tables 1 and 2, 
respectively. 
The results show good agreement with each other, as 
the number of terms in ADM solution increases so 
does the accuracy between the ADM solution and 
the corresponding numerical results. A high degree 
of accuracy between the 20-term solution and the 
relevant Runge-Kutta results is evident for different 
values of η . 
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Fig.1- comparison between 1-, 2-, 3-, 15-term ADM 
solutions and Runge-Kutta 45 for Blasius profile. 
 
The curves of 1-, 2-, 3-, and 5-term ADM solutions 
for Blasius equation and its velocity profile are 
shown in figures 1 and 2. As the number of ADM 
terms increases, more conformity to the relevant 
Runge-Kutta is observed. The complete conformity 
of 15-term  ADM solution to the numerical curve is 
illustrated in Fig. 1 and 2.  

 
Fig.2- comparison between 1-, 2-, 3-, 15-term ADM 
solutions and Runge-Kutta 45 for Blasius velocity 

profile.    
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1:    1-term ADM 
2:    2-term ADM 
3:    3-term ADM 
*: 15-term ADM 
4: Runge-Kutta

 
5   Conclusion 
In view of analytical solution, the standard ADM 
adopted here, bears a good potential in dealing with 
the inherent nonlinearities of real physical problems. 
The results obtained in this study justify the need for 
more trails with the application of ADM to nonlinear 
phenomena. 
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Table 1 -Comparison between numerical and ADM results for BLASIUS equation with 
different values of η . 

1 

2

3

4

η

)(f η′  

1: 1-term ADM 
2: 2-term ADM 
3: 3-term ADM 

*: 15-term ADM 
4: Runge-Kutta 

η Numerical  
(Runge-kutta) 

5 terms of 
ADM 

10 terms of 
ADM 

15 terms of 
ADM 

20 terms of 
ADM 

(20-t ADM)-
Numerical 

0 0 0 0 0 0 0 
0.4 0.02655980 0.02655986 0.02655986 0.02655986 0.02655986 -6E-8 
0.8 0.10610804 0.10610811 0.10610811 0.10610811 0.10610811 -7E-8 
1.2 0.23794841 0.23794848 0.23794848 0.23794848 0.23794848 -7E-8 
1.6 0.42032030 0.42032035 0.42032034 0.42032034 0.42032034 -5E-8 
2 0.65002371 0.65002378 0.65002373 0.65002373 0.65002373 -1E-8 

2.4 0.92228926 0.92229044 0.92228922 0.92228922 0.92228922 4E-8 
2.8 1.23097621 1.23099215 1.23097612 1.23097612 1.23097612 9E-8 
3.2 1.56909362 1.56924080 1.56909346 1.56909349 1.56909349 14E-8 
3.6 1.92952360 1.93054788 1.92952230 1.92952340 1.92952340 20E-8 
4 2.30574473 2.31145241 2.30571452 2.30574450 2.30574435 38E-8 
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Table 2 -Comparison between numerical and ADM results for BLASIUS velocity with 
different values of η . 

η Numerical 
(Runge-kutta) 

5 terms of 
ADM 

10 terms of 
ADM 

15 terms of 
ADM 

20 terms of 
ADM 

(20-t ADM)-
Numerical 

0 0 0 0 0 0 0 
0.4 0.13276402 0.13276403 0.13276403 0.13276403 0.13276403 0 
0.8 0.26470887 0.26470887 0.26470887 0.26470887 0.26470887 -1E-8 
1.2 0.39377571 0.39377571 0.39377571 0.39377571 0.39377571 0 
1.6 0.51675628 0.51675629 0.51675628 0.51675628 0.51675628 0 
2 0.62976515 0.62976561 0.62976513 0.62976513 0.62976513 2E-8 

2.4 0.72898131 0.72898976 0.72898126 0.72898126 0.72898126 5E-8 
2.8 0.81150900 0.81160436 0.81150890 0.81150890 0.81150890 10E-8 
3.2 0.87608087 0.87684215 0.87608045 0.87608071 0.87608071 15E-8 
3.6 0.92332913 0.92799183 0.92331932 0.92332894 0.92332892 21E-8 
4 0.95551758 0.97865776 0.95528459 0.95551924 0.95551749 9E-8 
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