
An Approximated Solution to the Two-dimensional Lid-driven 
Cavity Flow, Using Adomian Decomposition Method and the 

Vorticity-Stream Function Formulation 
 

M. NAJAFI1, 3, M. TAEIBI-RAHNI2, 3, AND K. AAVANI2, 3 
 

1. Mathematics Department, Kent State University, Ohio State, USA 
2. Aerospace Engineering Department, Sharif University of Technology, Tehran, IRAN 

            3. Khayyam Research Institute, Tehran, IRAN 
 

  
Abstract:- In this work, we present a reliable algorithm to solve the two-dimensional lid-driven 
cavity flow, using the Adomian Decomposition Method (ADM). The vorticity-stream function 
formulation is used for the incompressible flow considered here. The solution is calculated in the 
form of a series with easily computable coefficients. Also, numerical simulation, using finite 
difference method (FDM), is performed for comparison purposes. This comparison shows 
considerably close agreements. 
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1 Introduction 
Over the last two decades, the Adomian 
decomposition method has been applied to 
obtain solutions to a wide class of both 
deterministic and stochastic PDE’s. In 
recent years however, this method has 
emerged as an alternation to solve a wide 
range of problems whose mathematical 
models involve algebraic, differential, 
integral, integro-differential, higher-order 
ordinary differential, and partial 
differential equations [1-8]. It yields 
rapidly converging series solutions by 
using only a few iterations for both linear 
and non-linear deterministic and stochastic 
equations. The advantage of this method is 
that, it provides a direct scheme for 
solving the problem, i.e., without the need 
for linearization, perturbation, massive 
computation, and any transformation.       
 
1.1 Governing Equations 
The fundamental equations of fluid 
dynamics are based on three universal 
laws of conservation: conservation of 
mass, conservation of momentum, and 
conservation of energy. Applied to fluid 

flows, these laws yield continuity, 
momentum, and energy equations. 
For incompressible Newtonian fluid under 
no external forces, 0=⋅∇ V

r
and the 

momentum equation is simplified to the 
following form: 
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where, V
r

 is velocity vector, P is pressure, 
ρ is density, and ν  is kinematic viscosity.  
The two-dimensional incompressible 
Navier-Stokes equations can be written in 
Cartesian coordinates as: 
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y-momentum:            
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                                                                (4) 
Recall, for Incompressible flows many 
applications, temperature changes are 
either insignificant or unimportant. 
Therefore it is not always necessary to 
solve the energy equation[9]. However, 
instead of solving the above equations, 
since our flow is two-dimensional we use 
vorticity-stream function formulation. In a 
two-dimensional flow, vorticity )(ω  is a 
scalar quantity defined by: 
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which is determined from the general 
definition: V

rr
×∇=ω . Also, taking the 

curl of equations (3) and (4), as a vector 
equation, one obtains the vorticity 
transport equation, as:  
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On the other hand, the stream function 

)(ψ is a scalar-valued function defined by 
the following relations: 
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Substituting these relations into Eq’n. (2) 
leads to the following Poisson equation: 
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Finally, the dimensionless governing 
equations used here are as follows: 
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                                                                (9) 
1.2 Lid-driven Cavity Flow 
The “lid-driven cavity problem” is a 
classical problem, which is also widely 
used as a benchmark in computational 
fluid dynamics (CFD). It is an excellent 
test case for comparing numerical methods 
that solve the incompressible Navier-
Stokes equations. In this problem, the 
incompressible viscous flow is surrounded 
by wall boundaries on all three sides and 
is driven by the uniform translation of the 
upper surface (lid) [9].  
 
2 ADM Applied to Vorticity-stream 
Function Formulation 
The principal algorithm of the Adomian 
decomposition method when applied to a 
general non-linear equation is in the form: 
                                                        

gNuRuLu =++ .                              (10) 
 
The linear terms are decomposed into 
L+R, while the non-linear terms are 
represented by Nu. Note, L is taken as the 
highest order derivative to avoid difficult 
integration involving complicated Green’s 
functions and R is the remainder of the 
linear operator. Also, L-1 is a definite 
integration, i.e.,  
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Obviously, if L  is a second-order 
operator, 1−L  is a two-fold indefinite 
integral, as: 
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Operating on both sides of Eq’n. (10) with 
1−L  yields: 

                                              
NuLRuLgLLuL 1111 −−−− −−= ,           (13) 

 
and gives 
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                                                             (14) 
The decomposition method represents the 
solution of Eq’n. (14) as the following 
series 
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The non-linear operator, ,Nu  is 
decomposed as: 
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Substituting Eq’ns. (15) and (16) into 
Eq’n. (14), we obtain: 
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where,  
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Consequently, it can be written as: 
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where, nP  are the Adomian’s polynomials 
of nuuu ,,, 10 K and are obtained from the 
formula:        
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Equation (20) gives:  
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The accuracy level of the approximation 
of ),( yxu  can be dramatically enhanced 
by computing coefficients (as many as we 
would like). The −n terms approximation: 
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can be used to approximate the solution.               
By using the above procedures for system 
of Eq’ns. (9), we obtain:  

 

),0,(0 xy yψψ ⋅=                                  (23) 
 

),0,()0,(0 xyx yωωω ⋅+=                                     (24) 
   

)),0,()0,(()0,(0 xyxxA yxxy ωωψ ∂⋅+∂⋅=                                                              
                                                             (25) 
                                            

),0,())0,((0 xxyB yyx ωψ ⋅∂⋅=                      (27) 
                                                        

jjxjiyjixjyj AA +∂∂+∂∂= −−+ ))(())((1 ωψωψ   

ni ,,0 L=    ,
2

1,,0 −
=

ij L                                             (28a)                                         

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp51-56)



jxyi AA ii +∂∂= ))((
22

ωψ       if   i   is even,                                                                                                  

                                                            (28b) 
                                                   

kkykixkiykxk BB +∂∂+∂∂= −−+ ))(())((1 ωψωψ     

ni ,,0 L=      
2

1,,0 −
=

ik L ,                                           (29a) 

                                                         
kyxi BB ii +∂∂= ))((

22
ωψ         if   i   is even,                                                                                                  

                                                            (29b) 
 

( )dydyBAdydy
x iiii ∫∫ ∫∫ −+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=+ Re2

2

1 ωω

ni ,,0 L= ,                                                                                       (30) 

  ∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

−=+ dydy
x iii ωψψ 2

2

1                                                  

ni ,,0 L= .                                                                                     (31) 
 
3 Computational Methodology-An 
Alternative Approach  
To computationally solve the vorticity 
transport equation (Eq’n. 6) on a discrete 
grid, we used the forward-time and 
centered-space (FTCS) scheme of FDM. 
This was done via replacing the time 
derivatives by one-sided forward and the 
spatial derivatives by centered differences. 
Rewriting Eq’n. (6) by using its discrete 
approximation [9, 10], yields: 
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where, the velocities jiu ,  and jiv .  are 
given by: 
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Note, by substituting Eq’ns. (32) and (33) 
directly into Eq’n. (6), the velocity vectors 
do not need to be explicitly computed. In 

order to ensure the stability and 
convergence of the algorithm, t∆  must be 
set small enough for a given viscosity ν  
and grid spacing. Rather than manually 
setting t∆ , one can compute it 
automatically using the following 
equations, where Re is the flow Reynolds 
number: 
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3.1 Stream Function Poisson  Equation 
The stream function Poisson equation 
(Eq’n. 8) can be rewritten as: 
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To computationally solve this equation, 
we used the successive over-relaxation 
(SOR) method [10, 11], as: 
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where, β  is the relaxation parameter 
which needs to be greater than one for 
extrapolation and less than two for 
stability purposes: 21 << β  [9, 10]. 
 

3.2 Boundary Conditions 
The  boundary  conditions  at  the  four  
walls  are  given  as  follows [9]: 
Left and Right Walls: 

0=u , 0=v , 0=ψ ,  and 2

2

x∂
∂

−=
ψω ,                               

                                                              (37) 
Bottom wall: 
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In order to integrate Eq’n (9), the 
boundary vorticity )( wallω  needs to be yet 
computed. We applied a first order 
approximation by expanding a Taylor 
series of the stream function around the 
boundary points as: 
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Substituting the boundary conditions into 
Eq’n. (15) and solving for wallω , we get: 
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 3.3 Computational Algorithm 
A general outline of the algorithm to solve 
the lid-driven cavity problem using the 
vorticity-stream function formulation is 
given as Algorithm 1 here. Note, the 
Poisson equation is solved first, instead of 
the vorticity transport equation, because 
initially for all interior points ji,ω is 
guessed. 
 
4 Concluding Remarks 
In this work, we considered an 
approximated solution of vorticity-stream 
function formulation using ADM. From 
the theoretical analysis and the numerical 
results, we may come to the following 
concluding remarks: 

1-We can claim that ADM method is useful 
successfully for solving the considered 
highly non-linear system of PDEs.  
2-From the outlined theoretical analysis, we 
can conclude that the proposed method is 
applicable for similar physical equations. 
3-The obtained numerical results compared 
with the analytical approximated solution 
show that the method needs to assign  
further terms in series. But our 
MATHEMATICA/MAPLE program can not run 
on a high speed PC Pentium IV for more 
than 3 terms in series. 
 

Conclusions 
In this work, we obtained an approximated 
solution of the vorticity-stream function 
formulation applied to the lid-driven 
cavity flow, by using the Adomian 
decomposition method. We demonstrated 
that, the decomposition procedure is quite 
efficient to determine approximated 
solutions when using numerical boundary 
conditions.     
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Figures and Graphs 

        Algorithm 1: Vorticity-stream function formulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Streamline and Vorticiy contour in Lid-driven cavity flow computational method. 
                 

 
 
 
 

                                                                         Fig 2. Vorticity contours using ADM for n=3 terms in Re=50. 
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