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Abstract:  Approximated solutions to two-dimensional and axisymmetric jet impinging flows have been 
presented here. Assumptions have been made to reduce the related full Navier-Stokes equations to a non-linear 
ordinary differential equation. The Admomian decomposition method (ADM) has been employed to obtain an 
approximated solution to this differential equation. A trial and error strategy has been used to obtain the 
constant coefficient in the approximated solution.  The results were compared with accurate numerical results, 
which show that the ADM is a high performance and accurate method to solve such flow equations. 
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1   Introduction 
Achievement of exact solution for non-linear partial 
differential equations such as Navier-Stokes (N-S) 
equations is an ambitious and perfect goal for engineers 
and mathematicians. However, computational finite 
discrete approaches such as Finite Volume Method, 
Finite Difference Method, and Finite Element Methods 
have been widely used to solve the N-S equations in the 
past decades. Computational methodologies have been 
the only way to solve the N-S equation for predicting 
flow behavior in most flows. Some of the problems 
with computational methodologies are: 1- they are 
flow dependent.  2- To simulate real flows, they are 
very time consuming, 3- stability and convergence 
are not resolved easily in many cases, 4- we need to 
use modeling and approximation of some unknown 
in order to achieve a closed system of equation in 
turbulent flows. Which could be a source of error in 
the computational methods. 
     Any type of approximated solution would be very 
valuable for mathematicians and engineers. To this end, 
ADM is one the techniques which was introduced to 
solve non-linear ordinary and partial differential 
equation  [1]. An advantage of this method is that, it can 
provide approximated or approximated solution to a 
rather wide class of non-linear (and stochastic) 
equations without linearization, perturbation, closure 
approximation, or discretization methods. Unlike the 
common methods, i.e., weak non-linearity and small 
perturbation which are change the physics of the 
problem due to simplification, ADM gives the 
approximated or approximated solution of the problem 
without any simplification.  Thus, its results are 
more realistic  [1]. 

During the past few years, several researchers 
have tried to modify the Admonian decomposition 

method. Zhang  [2] presented a modified ADM to solve 
a class of non-linear singular boundary value problem, 
which arise as non-linear normal modal equations in 
non-linear conservative vibratory systems. He verified 
the effectiveness of his method by solving three 
examples. Wazwaz  [3] developed a fast and accurate 
algorithm for solution of sixth-order boundary value 
problems. Luo e.al.  [4] revised ADM for cases 
involving inhomogeneous boundary conditions using a 
suitable transformation. They solved inhomogeneous 
heat and wave equations. Jafari and Varsha  [5] 
modified ADM to solve a system of non-linear 
equations, which yielded a series solution with faster 
accelerated convergence than the series obtained by the 
standard ADM. Zhu  [6] et.al. presented a new 
algorithm for calculating Adomian polynomials for 
non-linear operators by parametrization. The algorithm 
requires less formula than the previous method 
developed by Adomian. Abbasbandy  [7] presented 
some efficient numerical algorithms to solve a system 
of two non-linear equations (with two variables) based 
on Newton’s method. Their modified Adomian 
decomposition method was applied to construct the 
numerical algorithms. Some numerical illustrations 
were given to show the efficiency of algorithms. Luo 
 [8] proposed an efficient modification to ADM, 
namely two-step Adomian decomposition method 
(TSADM) that facilitated the calculations. He 
conducted a comparative study between the TSADM 
and previous methods with the help of several 
illustrative examples. Their results indicated that, the 
TSADM was effective and promising. 
  Recently, several researchers have used ADM 
to solve a wide range of physical phenomena in 
various engineering fileds such as heat and mass 
transfer  [9],  [10],  [11], vibration and wave equation 
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 [12],  [13], fluid flow prediction [14,  [15],  [16],  [17], 
porous media simulation  [18], and other non-linear 
systems  [19],  [20],  [21].  
  In this work, we are going to obtain an 
approximated solution to two-dimensional and 
axisymmetric jet impingement flows. For this purpose, 
we use self similar assumption to reduce the Navir-
Stokes equations to a non-linear ordinary differential 
equation. Then, we use ADM to obtain an 
approximated solution for this problem. A trial and 
error strategy was implemented to obtain the constant 
coefficient in the approximated solution.  
    
2   Problem Description 
When a jet impinges onto a surface, very thin 
hydrodynamic and thermal boundary layers form in 
the impingement region (Figure 1). Consequently, 
extremely high heat transfer coefficients are 
obtained within the stagnation zone.  

Jet impingement arrays are generally used 
as an effective source of cooling on the leading edge 
and mid-span regions of gas turbine blades and 
vanes to enhance the convective heat transfer.  The 
large rates of heat generation in integrated circuit 
(IC) chips pose severe thermal management 
challenges for the semiconductor industry. Recently, 
micro-jet heat sinks have been interested in by 
researcher. These micro-jets can be fully 
encapsulated, which removes the problems with 
larger spray cooling systems.  

 

 
Figure 1, the Schematic of a jet impingement    
on a flat plate 

 
3   Problem Formulation 
Consider equation F(u(t))=g(t), where F represents a 
general non-linear ordinary or partial differential 
operator including both linear and non-linear terms. The 
linear terms is decomposed into L+R, where L is 
easily invertible (usually the highest order 
derivative) and R is the remained of the linear 
operator. Thus, the equation can be written as: 

,Lu Ru Nu g+ + =  (1) 

where, Nu indicates the non-linear terms. By solving 
this equation for Lu, since L is invertible, we can write: 

1 1 1 1 .L Lu L g L Ru L Nu− − − −= − −  (2) 
Solving equation (1-2) for u, we get: 

1 1 1 ,u A Bt L g L Ru L Nu− − −= + + − − (3) 

where A and B are constants of integration and can 
be found from the boundary or initial conditions. 
Adomian method assumes the solution u can be 
expanded into infinite series as: 

0
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u u

∞

=
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(4) 

Also, the non-linear term Nu will be written as:  

0
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where An are the special Adomian polynomials. 
Finally, the solution can be written as: 
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where u0 is identified as: A+Bt+L-1g   [1]. 
In Eq’n. (6) the Adomian polynomials can be 
generated by several means. Hear, we used the 
following recursive formulation:  
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Since the method does not resort to linearization or 
assumption of weak non-linearity, the solution 
generated is in general more realistic than those 
achieved by simplifying the model of the physical 
problem. 
 
3.1 Application to Impingement Jet Flows 
For plane incompressible two-dimensional flow, the 
governing equations are two-dimensional Navier-
Stokes equations involving continuity and momentum. 
Using similarity solution strategy, the governing 
equation for this type of flows in two-dimensional 
and axisymmetric form can be reduced to: 

01)( 2 =′−+′′+′′′ ffff β , (8)

where, ),(),( ηη BfvfBxu ≡′≡  
Byη
υ

=
,  and B is 

the inverse of the flow characteristic time scale. 
Also, β=1 for two-dimensional and β=2 for 
axisymmetric flows  [22]. 
The boundary conditions are u=v=0. at the wall 
(η=0) and u=Bx at large distances from the wall. 
This means: 

0)0()0( =′= ff  & 1)( =′ ηf as   ∞→η . (9)
Equation (8) contains two non-linearities and no 
analytic solution has ever been found for it  [22]. 
To apply the decomposition method, we write 
equation (8) in an operator form as: 

2)(1 ffffL ′+′′−= βη , (10)

where, 
3

3

ηd
dL = . Assume, the inverse of the operator as  

ηηη
η η η

η dddL ∫ ∫ ∫=−

0 0 0

1 (.)
. 

(11)
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Applying the inverse operator to Eq’n. (10) yields: 
21111 )(1 fLffLLfLL ′+′′−= −−−−

ηηηηη β  (12)
 
3.1.1 Two-dimensional Impinging Jet Flow  
If we consider β=1 in Eq’n.  (12) the two-
dimensional jet impinging flow will be obtained as: 

2 3 1 2( ) (0) (0) (0) / 2 /6 ( ).f f f f L f f fηη η η η −′ ′′ ′′ ′= + + − + − + (13)

Applying the boundary condition (9) at η=0, we get: 
2 3 1 2( ) (0) / 2 / 6 ( ).f f L f f fηη η η −′′ ′′ ′= − + − +

 
(14) 

The ADM consider the following expression for )(ηf : 

0

( ) ( ).n
n

f fη η
∞

=

= ∑
 

(15)

Also, the method assumes the non-linear function 
F( )(ηf )as an infinite power series of polynomials as: 

0
( ( )) .n

n
F f Aη

∞

=

= ∑
 

(16)

In Eq’s. (15) and (16) An’s are calculated from (7) 
and fn’s can be obtained by substituting (15) and 
(16) into (14) to get: 

 
∑ ∑
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(17)

 In Eq’n. (17) to calculate the components of An and 
fn, we need f0(η) as follows: 

6/2/)0()( 32
0 ηηη −′′= ff . (18)

To find )0(f ′′  we will utilize the boundary 
condition at infinity (see Eq’n. 9). To this end, let 

)0(f ′′ =α. Thus, Eq’n. (18) becomes: 

 6/2/)( 32
0 ηηαη −=f . (19)

Now, the remaining components of )(ηf in Eq’n. 
(17) can be determined recurrently as: 

1
1( ) ( )n nf L Aη −
+ = . (20)

Recall that, Ak’s can be generated from Eq’n. (7) as: 
2

0000 fffA ′+′′−= , 
1010101 2 ffffffA ′′+′′−′′−= , 

2
1202011202 2 fffffffffA ′+′′+′′−′′−′′−= , 

3021302112303 22 ffffffffffffA ′′+′′+′′−′′−′′−′′−= ,

 

Similarly fn can be determined from equations (19) 
and (20) as: 

6/2/ 32
0 ηηα −=f , 

567
1 120

1
360
1

2520
1 αηηαη +−=f

, 
83921011

2 40320
1

90720
1

226800
1

2494800
1 ηαηααηη −+−=f

, 
…. 

 

Therefore,  
...43210 +++++= ffffff   . (21)

Here, α is yet to be determined (see results and 
discussion in section 4). 
 
3.1.2 Axisymmetric Impingement Jet Flow  
If β=2 in Eq (8), the governing equation for 
axisymmetric jet impinging flow are obtained as  [22]: 

)2(6/2/)0()0()0()( 2132 fffLffff ′+′′−+−′′+′+= −
ηηηηη  

(22)

Using ADM and applying the same approach as 
discussed for two-dimensional case, the Adomian 
polynomial and closed form solution in the 
axisymetric case can be obtained as: 
 

2
0000 2 fffA ′+′′−= , 

1010101 222 ffffffA ′′+′′−′′−= , 
3021302112303 222222 ffffffffffffA ′′+′′+′′−′′−′′−′′−= , 

… 

 
 
(23)

Similarly, fn’s can be determined from Eq (19) and 
(20) as: 

6/2/ 32
0 ηηα −=f , 
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1
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1 ηαη +−=f
, 

921011
2 9072

1
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277200

1 ηααηη −+−=f
, 

1231321415
3 213840

1
77837760

223
1816214400

1051
02724321600

1051
ηαηααηη +−+−=f +

…. 

 
 
 
 
 
 
(24)

Finally,  
...43210 +++++= ffffff    . (25)

Now, to find the complete solution to Eqn’s. (21) 
and (3-20), we need to find α. Accurate prediction of 
α is considerably important, since it affects the 
accuracy of the final solution. Recall, f ′′ is related 
to the shear stress and thus )0(f ′′ is related to the shear 
stress at the wall. Therefore, its accurate prediction is 
very important from skin friction view point. 
Wang  [23], mentioned, that Pade approximation can 
not be applied for this type of equation. He 
transformed the Blasius equation into a new space 
and calculated α which was rough. Later, Hashim 
 [24] showed that, ADM Pade approach can be used 
and gives a more accurate α for Blasius equation 
than Wang’s.   
However, in this work, neither we used Pade 
approximation nor Wang’s transformation. We 
employed a trial and error approach. To achieve this 
goal, we relied on the physics of the problem and we 
looked at the physical meanings of f ′ and f ′′ . 
Recall that f ′  is the dimensionless velocity inside 
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the boundary layer and f ′′  is related to the shear 
stress. As expected and from the boundary 
conditions (Eq’ns. 9), f ′ approaches unity as η 
becomes very large. Here, one must ask “how large 
is infinity”. To answer this question, we should look 
at f ′′  which approaches zero outside the boundary 
layer. Thus, the answer is: when f ′′  becomes very 
small. Now, if we assume ∞η as a new variable and 
consider 0)( =′′ ∞ηf , as a new equation, then we 
would have a system of two non-linear algebraic 
equations with unknowns α and η  (see below) 
which can be solved by the trial and error strategy 
mentioned above:   

  ⎩
⎨
⎧

∞→=′′
∞→=′

ηη
ηη

asf
asf

0)(
1)(

 

, 
. (26) 

 
4   Results and Discussion 
ADM was used to achieve an approximated solution to 
two-dimensional and axisymmetric jet impingement 
flows.  As mentioned earlier, α and η∞ were obtained 
by a trial and error approach from Eq’n. (3-25) as: 
Two-dimensional Jet Impingement: 

1.23197)0( ==′′ αf  and    485.3=∞η  
 
Axisymmetric Jet Impingement: 

1.31195)0( ==′′ αf   and    3.2=∞η .  
 
Table (1) compares our approximated ADM solution 
with the reliable numerical data of reference  [22]. 
As shown, there is an excellent agreement between 
the two different results.  
Table 1. Comparison of )0(f ′′  with the reliable 
numerical data of reference  [22]. 

 Numerical Data ADM Error

2-D )0(f ′′ =1.23259 )0(f ′′ 1.23197 4105 −×

Axisymmetric )0(f ′′ =1.31194 )0(f ′′ =1.31195 5101 −×
 
 Recall, another boundary layer effect is the 
displacement thickness, as the distance the outer 
inviscid flow is pushed away from the wall by the 
retarded viscous layer. The formal definition of the 
boundary layer displacement thickness is  [22]]: 

 
∞∞

∞

∞→
−=−=′−=∫ )()(lim)1(

0

2* ηηηηη
η

ffdf
 

(27)

As listed in Table (2), the predicted boundary layer 
displacement thickness in our solution, is considerably 
close to the numerical predictions of Ref.  [22]. 

Table 2. Comparison of ∗η  with the accurate numerical 
data of reference  [22]. 

 Numerical Data ADM Error 
2-D ∗η =0.6479 ∗η =0.6481 4102 −×

Axisymmetric ∗η =0.5689 ∗η =0.5684 4105 −×

 
Tables (3) and (4) compare our solution and the 
numerical data of reference  [22] for two-
dimensional and axisymmetric jet impingement 
flows, respectively. As is seen from these tables, 
there is an excellent agreement between the two 
results. 
4.1 Sensitivity of the Solution to the Number of 
Polynomial Terms Used 
Obviously, as the number of terms in the expansion 
polynomial series of ADM method increases, the 
closed form solution gets closer to the exact 
solution. Also using infinite number of terns, the 
ADM closed form solution coincides with the exact 
solution. However, when ADM is used, one must 
first answer the question “how many terms are 
needed”. It is not so easy to find a general answer to 
the question, since it is problem dependent. We have 
shown that, as η increases and as the sensitivity of 
the flow variables become higher, we need to keep 
more terms in the polynomial expansion series.  
 Figure 2 shows the behavior of the solution with 
respect to the number of terms in the expansion 
polynomial series. Note from this figure that: 
1-As η increases, the difference between our 
solution and the exact solution increases and thus it 
is necessary to keep more terms in our closed form 
solution.  
2-As the sensitivity of the variables increases (e.g. 
f ′′ ) the sensitivity to the number of terms in the 

closed form solution increases. As shown in Tables 
3 and 4, we selected f ′′  (which has the highest 
sensitivity with respect to f and f ′′ ) for comparison 
with other numerical results.  

Thus, when using ADM to solve such 
problems, having a good physical knowledge of the 
problems is very important. Since, it is practically 
impossible to consider infinte number of terms in 
the polynomial series, it needs to be determined how 
far from the wall (in η direction) our ADM results 
are physically acceptable. This matter is more 
important for problems having at least one boundary 
at infinity. However, obviously, the infinity 
boundaries are different in mathematics and in 
physics. So that, a closed form solution obtained for 
a physical problem which is very accurate inside the 
infinity boundaries may not be true outside of it. In 
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this work, we obtained η∞=3.485 and η∞=2.3 for 
two-dimensional and axisymmetric flows, 
respectively and as Tables 1 to 4 show, the results 
are very accurate for η≤  η∞. However for η∞> η, the 
results are not physical. If we are interested in 
achieving physical and accurate results for η∞> η 
(3.48 or 2.3 in this work) we must consider more 
terms in ADM. This means that, by adding more 
terms in the ADM the range of infinity boundary 
(η∞) goes farther away from the wall. In other 
words, adding more terms the results are acceptable 
for a wider range 
 
 
5   Conclusion 
Admomian decomposition method has been 
employed to obtain an approximated solution to 
two-dimensional and axisymmetric jet impingement 
flows. A trial and error strategy has been used to 
obtain the constant coefficient (α) in the closed form 
approximated solution. To verify our solution, the 
results were compared with reliable numerical data. 
In this regard, the sensitive variable f ′′ and also the 
displacement thickness (η*) were compared with the 
numerical results. These comparisons showed 
excellent agreements.  
 Also, the results showed that, as the sensitivity of 
the flow variables rises the need for keeping more 
terms in the closed form polynomial solution is 
increased. For the problems which involve at least 
one boundary condition at infinity, the applicable 
range of the solution in η direction (infinity 
boundary) must indicated. For η greater than the 
boundary layer thickness, more terms needs to be 
considered in our ADM series solution.  

Table 3. Comparison of our results with 
those of Ref  [22] for two-dimensional flow. 

f ′′  η 
Num. ADM 

Error 

0.1 0.11826 0.11819 7E-05 
0.2 0.22661 0.22648 0.00013 
0.3 0.32524 0.32504 0.0002 
0.4 0.41446 0.41419 0.00027 
0.5 0.49465 0.49431 0.00034 
0.6 0.56628 0.56587 0.00041 
0.7 0.62986 0.62939 0.00047 
0.8 0.68594 0.68538 0.00056 
0.9 0.73508 0.73444 0.00064 
1.0 0.77787 0.77714 0.00073 
1.1 0.81487 0.81405 0.00082 
1.2 0.84667 0.84575 0.00092 
1.3 0.87381 0.87279 0.00102 
1.4 0.89681 0.89567 0.00114 
1.5 0.91617 0.91491 0.00126 
1.6 0.93235 0.93095 0.0014 

1.7 0.94578 0.94423 0.00155 
1.8 0.95684 0.95514 0.0017 
1.9 0.96588 0.96401 0.00187 
2.0 0.97322 0.97117 0.00205 
2.2 0.98386 0.981412 0.002448
2.4 0.99055 0.987663 0.002887
2.6 0.99464 0.991293 0.003347 

 
Table 4. Comparison of our results with 
those of Ref  [22] for axisymmetric flow. 

 f ′′  
η Num. ADM 

Error 

0.1 0.12619 0.12619 0
0.2 0.24239 0.24239 0
0.3 0.34863 0.34863 0
0.4 0.44499 0.44499 0
0.5 0.53160 0.53160 0
0.6 0.60871 0.60871 0
0.7 0.67663 0.67663 0
0.8 0.73577 0.73578 -1E-05
0.9 0.78666 0.78666 0
1.0 0.82987 0.82988 -1E-05
1.1 0.86608 0.86608 0
1.2 0.89598 0.89599 -1E-05
1.3 0.92032 0.92033 -1E-05
1.4 0.93983 0.93984 -1E-05
1.5 0.95522 0.95524 -2E-05
1.6 0.96718 0.96719 -1E-05
1.7 0.97631 0.97632 -1E-05
1.8 0.98316 0.98318 -2E-05
1.9 0.98822 0.98823 -1E-05
2.0 0.99190 0.99188 2E-05
2.2 0.99635 0.99598 0.00037 
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Fig. 2, of solution to the number of ADM 
terms used, (a) f ,  (b) f ′ , and (c) f ′′ . 
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