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1   Introduction 
Mathematical modeling of many physical systems 
leads to nonlinear differential equations. An 
effective method is required to analyze the 
mathematical model witch provides solutions 
confirming to physical reality, i.e., the real world of 
physics. Therefore, we must be able to solve 
nonlinear differential equations, in space and time, 
which may be strongly nonlinear. Common analytic 
procedures linearize the system or assume that 
nonlinearities are relatively insignificant. Such these 
assumptions, sometimes strongly, affect the solution 
with respect to the real physics of the phenomenon. 
Generally, the numerical methods witch discritize 
the equation in space and time such as Runge-Kutta 
can permit us to calculate some values of time and 
space variables and we should care of chaos and 
bifurcation. Also, the numerical methods require 
long computation time. So, solving the problem with 
considering its nonlinearity and not using 
perturbation or linearization, … is necessary in our 
new world.  
     The Adomian decomposition method [1-10], 
proposed by Adomian initially with the aims to 
solve frontier physical problems, has been applied to 
wide class of deterministic and stochastic problems, 
linear and nonlinear, in physics, biology, and 
chemical engineering, …. For nonlinear models, the 
methods have shown reliable results in analytical 
approximation that converges very rapidly. 
 

 
2   Adomian Decomposition Method 
Consider the general equation, ( )Fu g t= , where F 
represent a general nonlinear operator, which could 
be decomposed to linear and nonlinear terms. One 
can decompose the linear term to Lu+Ru, where L is 
the highest order derivative operator and R is the 
reminder of linear operators. Thus the equation may 
be rewritten in the form, 

(1)Lu Ru Nu g+ + = . 

N  is the nonlinear operator. Solving Lu, we have, 
(2)Lu g Ru Nu= − − . 

If one applies inverted of L on both sides, the 
equation can be written as, 

(3)1 1 1 1L Lu L g L Ru L Nu− − − −= − −  

where 1−L  represent the inverted highest order 
operator L. For example, L is the second order 
derivative, so 1−L  is a twofold integration operator. 
Then Eq. (3) yields, 

(4)( ) ( ) 1 1 10 0u u tu L g L Ru L Nu− − −′= + + − −  

According to Adomian decomposition method [1], 
we decompose u  as, 

(5)
0

n
n

u u
∞

=

= ∑  

and the nonlinear term Nu are decomposed using 
Adomian polynomials. 
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The Adomian polynomials, An, can be calculated 
[…] in the form, 

(7)( )( )
0

1 , 0,1, 2,
!

n

n n

dA N v n
n d

λ

λ
λ

=

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
K  

Now substituting (5) and (6) in (4), we obtain 
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which ou  identified as ( ) ( ) gLutu 100 −+′+ . 
According to Adomian decomposition method, well 
described in [1], the equation is transformed to a set 
of recursive relations given by, 
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u0 can be obtained using initial conditions and 
consequently all of un are calculable. Since the series 
converges very rapidly, the k-term approximation 
can be use as a practical solution. 

(10)
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Convergence has been rigorously established by 
Yves Cherrualt [1] and readers can find more in [2-
5]. 
 
 
3   Variational iteration method 
To illustrate its basic concepts of the variational 
iteration method, we consider the following 
differential equation: 

( )Lu Nu g t+ = (11)
where L is a linear operator, N a nonlinear operator, 
and g(t) a known analytic function. According to 
He’s variational iteration method [11-17], we can 
construct a correction functional as follows. 

(12)
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where λ is a general Lagrangian multiplier [11-17], 
which can be identified optimally via the variational 
theory, the subscript n denotes the nth order 

approximation, nu  is considered as a restricted 

variation, i.e. 0=nu . 
Eq. (12) is called a correction functional. The 
variational iteration method proposed by He has 
been shown to solve effectively, easily and 
accurately a large class of nonlinear problems with 
approximations converging rapidly to accurate 
solutions. For linear problems, its exact solution can 
be obtained by only one iteration step due to the fact 
that Lagrange multiplier can be exactly identified. 
 
4 Application of Adomian 
decomposition for a linear PDE system 
The problem considered in this paper is motivated 
by an analogous problem in ordinary differential 
equations for coupled oscillator, and has potential 
application in isolating a vibrating a vibratory object 
from the outside disturbances. For example, rubber 
or rubberlike materials can be used to either absorb 
or shield a structure from vibration. As an 
approximation, these materials can be modeled as 
distributed springs. Interested readers are referred to 
Najafi (1996) [18] for further application of such a 
configuration. 
Dynamics of the system under consideration are 
governed by the following set of partial differential 
equations.  

(13)
4

1 1

4
2 2

( )    0 1,     0
( )    0 1,     0

tt xxxx t

tt xxxx t

u a u k v u u x t
v a v k u v v x t

β
β

⎧ + = − − ≤ ≤ >⎪
⎨

+ = − − ≤ ≤ >⎪⎩
 

with initial conditions, 

(14)
1 1

2 2

( ,0) ( ),     ( ,0) ( )     0 1
( ,0) ( ),    ( ,0) ( )t t

u x p x v x q x x
u x p x v x q x

= = ≤ ≤
= =

 

and boundary conditions, 

(15)
(0, ) (0, ) 0, (0, ) (0, ) 0, 0
(1, ) (1, ) 0,   (1, ) (1, ) 0

xx xx

xx xx

u t u t v t v t t
u t u t v t v t

= = = = >
= = = =

 
where t and x represent the time and space variables 
respectively, and ),( txuu =  and ),( txvv =  are the 
vertical displacements of the beams measured from 
the horizontal equilibrium positions. The system 
parameters, 2,1 ,0 =≥ iai , are described in terms of 
flexural rigidity coefficient, ii IE , and mass density, 

im , as iiii mIEa /4 = , where iE denotes Young 

modulus of elasticity and iI  denotes the cross-
sectional area. Uniform beam properties are 
assumed; that is, im , iE  and iI  are assumed to be 
constants. The terms )( vuk −±  represent the 
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coupling between the two beams and k  denotes the 
elastic coupling constant. The terms tu1β−  and 

tv2β−  represent the velocity feedback control. 
Rewriting the system in the operator form 

(16)
4

1 1

4
2 2

( ) ( ) ( , ) 0,
( ) ( ) ( , ) 0.

t x

t x

L u a L u R u v
L v a L v R u v
⎧ + + =⎪
⎨

+ + =⎪⎩
 

The linear term is decomposed to L and R, where L 
is the highest order derivative and R  is the reminder 
of the linear operator. Lt and Lx are considered 
second order and forth partial differential operator, 
respectively. 1−

tL  is twofold integration with respect 

to t from 0 to t. Applying the 1−
tL  to system (16) 

and using initial condition (14) yields, 

(17)
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4 1 1
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4 1 1
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( , ) ( ) ( )
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where the first two terms of equation (17) are 
integration constants. According to ADM [1] u(x,t) 
and v(x,t) can be decomposed as, 

(18) 0

0

( , ) ( , ),
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Substituting (18) to (17) gives, 
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According to ADM, the system of equations (16) is 
transformed to a set of recursive relations given by, 

(20)
0 1 2

4 1 1
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( , ) ( ) ( )
( , ) ( ) ( , )    , 0n t x n t n n

u x t p x tp x
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and 

(21)
0 1 2

4 1 1
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( , ) ( ) ( )
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u0 and v0 can be obtained using initial conditions. 
The terms un+1 and vn+1 are calculated using 

preceding terms. Consequently the summation of un 
and vn terms is the desired solution which converges 
rapidly. In real world, we can calculated k terms of 
the summation, so the approximate solution is, 

(22) 
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5   The specific case of a parallel 
system of Euler-Bernoulli Beams 
The system which we are willing to deal with is a 
parallel system of Euler-Bernoulli beams with 
distributed springs and dampers. 

(23)
      0 1,     0
      0 1,     0

tt xxxx t

tt xxxx t

u u v u u x t
v v u v v x t

+ = − − < < >⎧
⎨ + = − − < < >⎩

 

and initial conditions are 

(24)
( ,0) sin( ),          ( ,0) sin( )
( ,0) 0,                   ( ,0) 0t t

u x x v x x
u x v x

π π= = −
= =

 

and boundary conditions 

(25)
(0, ) (0, ) 0,       (0, ) (0, ) 0
(1, ) (1, ) 0,        (1, ) (1, ) 0

xx xx

xx xx

u t u t v t v t
u t u t v t v t

= = = =
= = = =

 

After decomposition u(x,t) and v(x,t) according to 
(19), the system of equations (23) can be rewritten 
as, 

(26)
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Each of equations in (26) can be rewritten in a set of 
recursive relations. 

(27)

0

1

( , ) sin( )

( , ) [( )

( ) ]        0
n n xxxx

n n n t

u x t x

u x t u

v u u dtdt n

π

+

=⎧
⎪⎪ =⎨
⎪
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∫∫  

and  

(28)

0

1

( , ) sin( )

( , ) [( )

( ) ]        0
n n xxxx

n n n t

u x t x

u x t v

u v v dtdt n

π

+

= −⎧
⎪⎪ =⎨
⎪
+ − − ≥⎪⎩

∫∫  

The procedure is clear and forward. These 
calculations can be programmed using symbolic 
packages such as Maple V. We computed a 2-tem 
solution for u and v. 
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6   system of parallel Euler-Bernoulli 
Beams via VIM 
Following the variational iteration method, its 
correction variational functional in t-direction can be 
expressed as follows. 
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(30)

nuδ  is considered as a restricted variation, i.e. 

0=nuδ . Making the correction functional, Eq. 

(30), stationary, noticing that 0=nuδ , 
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yields the following stationary conditions: 

1

1

1

: 1 ( ) 0

: ( ) 0

: ( ) 0

n

n

n

u
du
d

u

δ λ τ

δ λ τ
τ

δ λ τ

′− =

=

′′ =

 (34) 

The Lagrange multiplier, therefore, can be 

identified. 

1( ) tλ τ τ= −  (35) 

As a result, we obtain the following iteration 

formulae in t-direction. 
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(36) 

We start with the initial condition given by Eq. (24). 

Therefore, we have u0 as follows. 

0
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( , ) sin( )

u x t x
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π
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 (37) 

By the iteration formulae, we can obtain the 
following results: 
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(38) 

and so on, in the same manner the rest of 
components of the iteration formulae (36) can be 
obtained using symbolic packages such as Maple.  
 
 

7   Conclusion 
In this paper, Adomian decomposition method is 
used to solve a system of coupled Euler-Bernoulli 
beams. In comparison with perturbation or 
linearization methods, this method gives analytical 
solution in series form which converges rapidly. The 
reliability and the reduction in the size of 
computational work is certainly a sign of a wider 
applicability of the method. 
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