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Abstract: - In this paper, Adomian Decomposition Method (ADM) is applied to typical oscillation equations 
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between the results of ADM solutions and the corresponding numerical ones. 
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1   Introduction 
Mathematical modeling of many physical systems 
leads to nonlinear ordinary differential equations as 
well as PDE. An effective method is required to 
analyze the mathematical model which provides 
solutions conforming to physical reality. Therefore, 
it is much desirable to solve nonlinear differential 
equations, in space or time, which may be strongly 
nonlinear. Common analytic procedures linearize 
the system or assume that nonlinearities are 
relatively insignificant. Such assumptions, 
sometimes strongly, affect the solution with respect 
to the real physics of the phenomenon. Generally, 
the numerical methods which discretize the equation 
in space and time, such as finite difference, can 
permit us to calculate some values of time and space 
variables and care must be taken for chaos and 
bifurcation. Also, the numerical methods require 
long computation time.  
     Many oscillating systems in engineering and 
science are represented by 0)k,c,u,u(fum =+ &&& . 
By employing an especial approximation for 
restoring force, f(u), Duffing’s differential equation 
results, which models a large number of dynamic 
systems. Duffing double-well oscillator was first 
developed to model forced vibrations of industrial 
machinery. 

Even though, Van der Pol’s equation was originally 
developed to describe the dynamics of a triode 
electronic oscillation, but it demonstrates many of 
the basic properties of a nonlinear system 
representing a mechanical self-exited mechanism. 
The Adomian decomposition method [1-5], 
proposed initially by Adomian with the aim to solve 
frontier physical problems, has been applied to a 
wide class of deterministic and stochastic problems, 
linear and nonlinear, in physics, biology, and 
engineering, … . For nonlinear models, the methods 
have shown reliable results in analytical 
approximation that converges very rapidly [1, 2, 4, 
5]. 
 
 
2   Basic Method 
Consider the general equation, , where F 
represent a general nonlinear operator, which could 
be decomposed into linear and nonlinear terms. One 
could decompose the linear term into 

( )tgFu =

RuLu + , 
where L  is the highest order derivative operator and 
R  is the reminder of the linear operators. Thus the 
equation may be rewritten in the form, 

(1)gNuRuLu =++ , 
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where  is a nonlinear operator. Solving for , 
we have,  

N Lu

(2)NuRugLu −−= . 

If one applies the inverse operator of L  on both 
sides, the equation can be written as, 

(3)NuLRuLgLLuL 1111 −−−− −−= , 

where  represents the inverse of the highest order 

operator 

1L−

L . For example, L  is a second order 
derivative operator, so  is a twofold integral 

operator. Then Eq. (3) yields, 

1−L

(4)( ) ( ) NuLRuLgLutuu 11100 −−− −−+′+= ,

The first two terms, on the right hand side, are 
constants of integration and are to be computed by 
using the initial conditions. By ADM [4], u  is 
decomposed to 

(5)n
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uu ∑
∞

=

=
0

, 

Using Adomian polynomials, the nonlinear term, 
, decomposes to Nu

(6)( )∑
∞

=

=
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10 ,,,
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nn uuuANu K . 

The Adomian polynomials, , can be calculated 
[6] in the form, 
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Now, by substituting (5) and (6) in (4), the following 
is obtained, 
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where  is identified as . The  

Eq. (4) is transformed to a set of recursive relations 
given by, 

0u ( ) ( ) gL0ut0u 1−+′+
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After identifying  as , and 

evaluating it, all the 's will become calculable by 
using I.C.'s. Since the series converges very rapidly, 
the k-term approximation could be use as a practical 
solution, 

0u ( ) ( ) gL0ut0u 1−+′+

nu

(10). ui

k

i
k ∑

−

=

=
1

0
ϕ

Of course, the exact solution could be obtained by 
utilizing, 

ulim k
k

=
∞→
ϕ . 

 
 
3   Some Examples  
Now, we apply the above mentioned technique to 
solve some nonlinear problems. 
 
 
3.1   Duffing Equation 
The following problem is motivated by an analogous 
problem in ordinary differential equations and 
widely used in many perturbation techniques,  

(11)0uuu 3 =++ ε&& , 
with initial conditions, 

(12)5)0(u      ,1)0(u == & . 

Rewriting the equation in the operator form, 
(13)0)u(Nu)u(Lt =++ ε . 

The highest order linear derivative operator is , 

where  is a second order differential operator with 
respect to t. The nonlinear operator is represented by 

.  The integral operator, , is a twofold 
integration with respect to t from 0 to t. Applying the 

 to equation (13) and using initial condition 
(12). It  yields, 

tL

tL

N 1−
tL

1−
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1
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The solution, , can be decomposed as follows, )(tu
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Substituting (16) to (15) gives, 
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The Eq. (14) is transformed to a set of recursive 
relations given by, 

(17) 
0

1 1
1

( ) 1 5 ,
( ) ( ) ( ),   0n t n t n
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where  is obtained using initial conditions and the 

 terms are calculated using preceding relations, 

(17). Hence, the summation of  terms is the 
desired solution which converges rapidly. In 
practice, we can calculate the first k terms of the 
summation in place of the whole, so the approximate 
solution is, 
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The procedure is clear to follow and to calculate. 
These calculations can be programmed using 
symbolic packages such as Maple V or 
Mathematica. 
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So, the result can be presented as a series solution in 
the form of, 
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In practice, due to the rapid convergence of the 
solution, the first few terms will provide the required 
accuracy. 

 
3.2   Van der Pol Equation 
It is an equation describing self-sustaining 
oscillations in which energy is fed into small 
oscillations and removed from large oscillations. 

This equation arises in the study of circuits 
containing vacuum tubes and widely used in many 
perturbation techniques,  

(21)0u)u1(uu 2 =−−+ &&& ε , 

with initial conditions, 
(22) 0)0(u      ,2)0(u == & . 

Rewriting the equation in the operator form, 
(23)0)u(Nu)u(Lt =++ ε . 

Again, the highest order linear derivative operator is 
. Where  is the second order differential 

operator and  is the nonlinear one. The inverse 

operator,  is a twofold integration with respect 

to t from 0 to t. Applying the operator, , to Eq. 
(23) and employing the initial condition (22) yields, 

tL tL
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According to ADM [1], can be decomposed to, )(tu
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introducing (25) into (24) gives, 

(26) 
)).((

))((2)(

0

1

0

1

0

tuNL

tuLtu

n
n

t

n
n

tn
n

∑

∑∑
∞

=

−

∞

=

−
∞

=

−

−=

ε

 

The following set of relations (27) are recursive and 
acquired by applying ADM to Eq. (23), 
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By employing the initial conditions,  is calculated 

and the other terms, , are obtained consecutively 
using the preceded results. The sought solution to 
the problem is the summation of  terms which 
converges fast. Because of its behavior, fast 
convergence, it will suffice to calculate only the first 
k terms as the solution, 

0u
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As previously mentioned, the packages such as 
Maple V or Mathematica, are utilized to calculate 

's in symbolic fashion, nu
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Summation of the first four-term of , as in 
(28), gives a partial sum solution in a series form, 
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4   Numerical Results 
The obtained ADM results for Duffing and Van der 
Pol equations are presented in tables 1-3. Tables 1 
and 2 contain the ADM results for various points in 
time while 1.0=ε . As seen in tables 1 and 2, the  3-
term and 4-term ADM solutions for both of the 
aforementioned equations are in good agreement 
with the corresponding numerical results.  
Moreover, when t is increased, it was observed that 
the error is increased too. It is evident that 
computation of more terms would results in better 
approximation. In table 3, the results of Van der Pol 
equation using ADM with 10=ε  are compared 
with those of the two-term perturbation solution. It is 
shown that there is no need to assume that ε  is a 
small parameter as it is required by perturbation 
theory. 

 
 

5   Conclusion 
In this paper, the standard Adomian decomposition 
method is used to solve some nonlinear oscillation 
equations. In comparison with perturbation or 
linearization methods, this method gives analytical 

solution in series form which converges rapidly. The 
reliability and the reduction in the size of 
computational work is certainly a sign of a wider 
applicability of the method. 
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Table 1 -Comparison of the numerical results with ADM solution for Duffing equation at 1.0=ε  
for different values of t 
 

t 3 terms of 
ADM 

4 terms of 
ADM  

Numerical 
(Runge-kutta) 

Numerical solution - 
4 terms ADM 

Absolute Error 
(%) 

0 0.99980019 0.99980019 1.00000000 0.00374053 0.37405285 
0.001 1.00479465 1.00479465 1.00499941 0.00376856 0.37498171 
0.01 1.04969418 1.04969418 1.04994019 0.00399432 0.38043308 
0.1 1.49265918 1.49265918 1.49314227 0.00234472 0.15703271 
0.5 3.18063997 3.18068685 3.17654735 0.00413950 0.13031443 
1 3.71608038 3.83005787 3.79760816 0.03244971 0.85447748 

 
 
Table 2 -Comparison of the numerical results with ADM solution for Van der  pol equation at 

1.0=ε  for different values of t 
 

t 3 terms of 
ADM 

4 terms of 
ADM 

Numerical 
(Runge-kutta) 

Numerical solution - 
4 terms of ADM 

Absolute 
Error (%) 

0.001 1.999999 1.999999 1.999998936 6.36E-08 3.1782E-06 
0.01 1.999900101 1.999900101 1.999897836 2.2649E-06 0.00011325 
0.1 1.99010708 1.990107095 1.99009935 7.7445E-06 0.00038915 
0.5 1.76563368 1.765879707 1.765849085 3.06222E-05 0.00173413 
1 1.123055555 1.143805158 1.138456445 0.005348713 0.46982149 

 
 
Table 3 -Comparison of the numerical results with ADM solution for Van der pol equation at 

10=ε  for different values of t 

t 3 terms 
of ADM 

4 terms 
of ADM 

Numerical 
(Runge-kutta) 

Numerical solution 
- 4 terms ADM 

Perturbation 
Solution 

0 1 2 2 0 29.083333 
0.001 1.99999901 1.99999901 1.999998988 2.20E-08 29.0825864959
0.01 1.99990925 1.999909296 1.999909283 1.33E-08 29.0068119317
0.1 1.99245833 1.997052605 1.99544093 0.001611675 16.6393212321
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