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Abstract :- The organization and management of the intense computation involved in the solution of large, sparse and
non-symmetric systems of equations, arising from the discretization of Elliptic Boundary Value Problems (BVPs) by
the Hermite Collocation method, on a Distributed-Shared Memory (DSM) multiprocessor environment is the problem
considered herein. As the size of the problem directly suggests the usage of iterative methods, we consider the parallel
implementation of the Successive Over-Relaxation (SOR) and the preconditioned Bi-Conjugate Gradient Stabilized
(Bi-CGSTAB) methods on DSM systems. Using the parallel algorithms we devised in [9, 10], which take advantage
of the red-black structure of the Collocation matrix, we address the problem of efficiently managing the whole com-
putation, through the MPI programming model, on a DSM system. The application was developed on a SGI Origin
350 DSM multiprocessor computer and its performance is revealed by the speedup measurements included.
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1 Introduction

Hermite Collocation is a high order finite element scheme
used as a discretizer especially when continuous first
derivatives are required. Among other properties, Col-
location produces large and sparse systems of equations
which poses no pleasant properties (e.g. symmetry).
Memory requirements and performance are two of the
main factors suggesting the usage of iterative methods
on multiprocessor environments. This motivated rele-
vant research in the areas of iterative method analysis
and parallel algorithm development. Main issues ad-
dressed were concerning both algorithmic (multi-color
orderings, domain decomposition/partitioning techniques,
parallel preconditioners, etc) and architectural (memory
management/distribution, processor architecture, etc) as-
pects. Particular results, in this direction, concerning the
Collocation method may be found in (e.g. [1,3,5,6,14]
and in our work in [13,7,9,10]. It is worthwhile to men-
tion that in [8,11], we conducted a performance analysis
on a large family of Krylov subspace methods, includ-
ing GMRES[15] and Bi-CGSTAB[17] as well as sev-
eral preconditioning schemes, and concluded that from
the tested Krylov methods the Backward Gauss-Seidel
(B-GS) preconditioned Bi-CGSTAB-P yields fast rates
of convergence when it applies to the solution of the
Hermite Collocation Poisson system, while at the same
time, outperforms all stationary iterative schemes, in-

cluding SOR, for medium and large size problems. In
[9] and [10] :
•We presented a generalized technique for devising ef-
ficient parallel algorithms, by constructing a virtual par-
allel machine ideally fitted for the problem at hand, and,
in the sequel, by making use of partitioning techniques,
the virtual computation was mapped onto a fixed size
parallel architecture
• We effectively used this technique to devise efficient
parallel algorithms for the iterative solution of Hermite
Collocation systems, by the preconditioned Bi-CGSTAB
and SOR methods.
In the work herein, to exploit and enhance the algo-
rithm’s parallelism, we implement the above methods
on environments supportingIncremental Parallelization
[2,4]. Namely, we implement the already appropriately
designed parallel algorithms on DSM machines using
the MPI standard [12], which utilize data dependency
and memory allocation issues, as the Automatic Paral-
lelization Option (APO) of the MipsPro compiler is un-
able to do so. Therefore we improve the algorithm’s per-
formance, on DSM machines, by managing the whole
computation in order to maximize locality and minimize
communication among the processing elements.

This paper is organized as follows: In Section 2
we briefly describe the structure of the collocation sys-
tem and the iterative methods used, as well as we high-
light the computationally intense parts where incremen-

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp290-295)



tal parallelism is to be applied. We also incorporate the
particular structure of the matrices involved into the al-
gorithms. In Section 3, we present the basic features
of the parallel architecture used to carry out the whole
computation, together with the programming protocol
each processor uses to compute intense matrix-vector
operations according to the MPI standard. Finally, in
Section 4, we present speedup measurements from the
implementation on a SGI Origin 350 DSM system.

2 SOR / Bi-CGSTAB for Collocation

Let us consider the linear system

Ax = b (1)

where the matrixA is in the well known red-black par-
titioning form

A =

[

DR HB

HR DB

]

. (2)

Collocation, among other celebrated discretizers such as
the Finite Differences, through a particular numbering
of equations and unknowns, results to a red-black or-
dered system when applied on Elliptic BVPs (e.g. [11]).
And as it is shown in [10,11], both B-GS preconditioned
Bi-CGSTAB and SOR iterative methods may be effec-
tively used for its solution.

The Algorithms

By considering now the classical splitting

A = DA − LA − UA (3)

where
DA =

[

DR O
O DB

]

, LA =

[

O O
−HR O

]

(4)

and

UA =

[

O −HB

O O

]

, (5)

the iterative methods under consideration may be algo-
rithmically described by :

SOR

Mω = DA − ωLA

Eω = (1− ω)DA + ωUA

Choosex(0)

for i = 1, 2, ...

t = Eωx(i)

t = t + ωb

SolveMωx(i+1) = t

Check for Convergence
end

B-GS Preconditioned Bi-CGSTAB [17]

Choosex(0)

r(0) = b−Ax(0)

Choosêr (usuallyr̂ = r(0))
for i = 1, 2, ...

ρi−1 = r̂T r(i−1)

if ρi−1 = 0 methodfails
if i = 1

p(1) = r(0)

else
βi−1 = ρi−1

ρi−2

αi−1

ωi−1

p(i) = r(i−1) + βi−1(p
(i−1) − ωi−1 v(i−1))

endif
SolveM p̂ = p(i) ; v(i) = A p̂

αi = ρi−1

r̂
T

v(i)

s = r(i−1) − αi v(i)

if ‖ s ‖ is small enoughthen
x(i) = x(i−1) + αi p̂ andstop

SolveM z = s ; t = A z

ωi = sT t
tTt

x(i) = x(i−1) + αi p̂ + ωi z

Check for Convergence
if ωi = 0 stop
r(i) = s − ωi t

end

Notice that:
• The highlighted statements are the computationally
intense parts of the algorithms
• The above algorithm for the Bi-CGSTAB implements
the Bi-CGSTAB-P version[16], which minimizes the resid-
ual, instead of the preconditioned residual, and is equiv-
alent to the postconditioned Bi-CGSTAB. For this case,
in [11], we observed that the B-GS postconditioned Bi-
CGSTAB yields faster convergence, hence

M = DA − UA . (6)

Incorporating the Collocation Structure

Aiming to the overall (serial and parallel) improvement
of the computational performance, it is necessary to in-
corporate the particular structures, of the matrices in-
volved, into the algorithms. For instance, in doing so
for the intense

SolveM z = s ; t = A z

one may easily observe its equivalence, and therefore
replace it into the algorithm, with the red-black instruc-
tion block:

Solve DB zB = sB

y = HB zB
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Solve DR zR = sR − y

ŷ = HR zR

tR = sR

tB = sB + ŷ

Furthermore, upon application of the Hermite Colloca-
tion method on Helmholtz-type Dirichlet BVPs, on a
uniformly partitioned (intons = 2p subintervals in both
directions) unit square, the associated with relation (2)
matricesDR,DB ,HR,HB ∈ R

8p2,8p2

are defined [10]
by :

DR = diag[A2 2A1 2A2 · · · 2A1 2A2 −A2
︸ ︷︷ ︸

2p−blocks

] ,

DB = 2 diag[A1 A2 · · · A1 A2
︸ ︷︷ ︸

2p−blocks

] ,

(7)

HR = [H
(R)
1 · · · H

(R)
2p ] ,

HB = [H
(B)
1 · · · H

(B)
2p ] ,

where eachH(R)
j ∈ R

8p2,4p is defined by [16]:

H
(R)
1 = (e1 − e2)⊗A4

H
(R)
2p = −(e2p−1 + e2p)⊗A4 ,

and fork = 1, . . . , p − 1

H
(R)
2k = (e2k−1 + e2k + e2k+1 − e2k+2)⊗A3

H
(R)
2k+1 = −(e2k−1 + e2k − e2k+1 + e2k+2)⊗A4

while eachH(B)
j ∈ R

8p2,4p is defined by [16]:

H
(B)
1 = (e1 + e2 − e3)⊗A3

H
(B)
2 = −(e1 − e2 + e3)⊗A4

H
(B)
2p−1 = (e2p−2 + e2p−1 + e2p)⊗A3

H
(B)
2p = −(e2p−2 + e2p−1 − e2p)⊗A4

and fork = 2, . . . , p − 2

H
(B)
2k−1 = (e2k−2 + e2k−1 + e2k − e2k+1)⊗A3 .

H
(B)
2k = −(e2k−2 + e2k−1 − e2k + e2k+1)⊗A4

In all the above,ej denotes thej-th unit vector inR
2p

while the matricesAi ∈ R
4p,4p are as defined in [11].

With this formulation of the matrices, it can be shown[16]
that for any vectorv ∈ R

8p2

, partitioned conformably
as

v = [vT
1 , . . . ,vT

2p]
T

there holds

HR v =
2p
∑

j=1

H
(R)
j ⋄ vj , (8)

where

H
(R)
j ⋄ vj

.
=







(
∑

ciei)⊗ (A4vj) whenj = odd

(
∑

ĉiei)⊗ (A3vj) whenj = even

with the constantscj andĉj to be obviously defined for
eachj by (7). Similarly,

HB v =
2p
∑

j=1

H
(B)
j ⋄ vj , (9)

where

H
(B)
j ⋄vj

.
=







(
∑

diei)⊗ (A3vj) whenj = odd

(
∑

d̂iei)⊗ (A4vj) whenj = even
.

From relations (8) and (9) it becomes apparent that, in
order to efficiently manage a block matrix-vector com-
putation involvingHR (equiv. HB) in both serial and
parallel environments, one has to preprocess the vector
by multiplying all of its odd (equiv. even) partitioning
blocks byA4 and all of its even (equiv. odd) partitioning
blocks byA3.

3 MPI Management

In this section, considering the observations made in the
previous section, we focus our attention on the MPI

Figure 1 : The Parallel Architecture

management of the computation involved with the B-
GS preconditioned Bi-CGSTAB, as the SOR case can
be treated in a similar way and has been treated in some
detail in [10] on a similar environment. The whole dis-
cussion is based on our work in [9, 10] where, taking
into consideration the essential factors of (a) uniform
load balancing, (b) minimal idle cycles of processors,
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and (c) minimal communication cost, we partitioned a
virtual architecture, in an optimal way for general oper-
ators, and mapped it on a proposed (basically pipelined)
architecture consisting ofPj , j = 1, · · · ,N processors
(depicted in Figure 1 forN = 6). Here, since we deal
with operators of Helmholtz-type, we follow a detour
to arrive at a more balanced computation. Referring to
Figure 1 we remark that:
• ProcessorP1, in addition to the computational tasks
assign to each processor, has been also assigned the tasks
of gatheringpartially processed data, assemble, in the
sequel, the final values for the inner products and other
parameters of the algorithm, and finallybroadcast(green
dashed communication lines) the results to all other proces-
sors.
• Assuming thatk = 2p/N is an even integer (other
cases can be treated similarly), each processorPj com-
putes onk red andk blacksubvectors of size4p. More
specifically, to each processorPj we assign all the nec-
essary tasks to compute the solution subvectors

x
(R)
l , l = (j − 1)k + 1, · · · , jk

and

x
(B)
l , l = 2p + (j − 1)k + 1, · · · , 2p + jk .

• The communication between processorsPj andPj+1

in order to compute the matrix-vector productHRzR is
depicted in Figure 2, while for theHBzB is depicted in
Figure 3.

Figure 2 : Communication needed to computeHRzR

Figure 3 : Communication needed to computeHBzB

• The total communication between processors, needed
in each iteration step of the B-GS preconditioned Bi-
CGSTAB, as well as the communication scheduling (for
the black and thered cycles respectively) is being de-
picted in Figure 4.

Figure 4 : Communication Scheduling

• In the local memory of each processor, before iteration
starts, we store copies of the matricesA3 andA4, as well
as copies of theLU -factored matricesA1 andA2. We
also store the appropriate parts of the initialx(0) and the
RHS vectors.

Taking into consideration all the above, the program
code each processorPj , j = 1, · · · ,N executes for
the intense matrix-vector operations (see section 2)

Solve DB zB = sB

y = HB zB

Solve DR zR = sR − y

y = HR zR

takes the specific form:

Black Cycle

do l = 2p + (j − 1)k + 1 to 2p + jk − 1 , 2

Solve 2A1z
(B)
l = s

(B)
l

yl−2p = A3z
(B)
l

Solve 2A2z
(B)
l+1 = s

(B)
l+1

yl+1−2p = A4z
(B)
l+1

enddo
[

tc1

tc2

]

←Receive

[

y(j−1)k−1

y(j−1)k

]

from Pj−1

Send to Pj+1

[

yjk−1

yjk

]

Send to Pj−1

[

y(j−1)k+1

y(j−1)k+2

]

[

tc3

tc4

]

←Receive

[

yjk+1

yjk+2

]

from Pj+1

tm1 ← tc1 + tc2

tm2 ← y(j−1)k+1 − y(j−1)k+2
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do l = (j − 1)k + 1 to jk − 3 , 2
tm3 ← yl

yl ← tm2 − tm1

tm1 ← yl+1 + tm3

tm2 ← yl+2 − yl+3

yl+1 ← tm1 + tm2

enddo

tm3 ← yjk−1 + yjk

yjk−1 ← tm2 − tm1

yjk ← tm3 + tc3 − tc4

Red Cycle

do l = (j − 1)k + 1 to jk − 1 , 2

Solve 2A2z
(R)
l = s

(R)
l − yl

yl = A4z
(R)
l

Solve 2A1z
(R)
l+1 = s

(R)
l+1 − yl+1

yl+1 = A3z
(R)
l+1

enddo
[

tc1

]

←Receive

[

y(j−1)k

]

from Pj−1

Send to Pj+1

[

yjk

]

Send to Pj−1

[

y(j−1)k+1

]

[

tc2

]

← Receive

[

yjk+1

]

from Pj+1

tm1 ← tc1

do l = (j − 1)k + 1 to jk − 3 , 2
tm2 ← yl + tm1

tm3 ← yl+1 − yl+2

yl ← tm2 + tm3

tm1 ← yl+1

yl+1 ← tm3 − tm2

enddo

tm2 ← yjk−1 + tm1

tm1 ← yjk − tc2

yjk−1 ← tm1 + tm2

yjk ← tm1 − tm2

4 Realization on a DSM computer

SGI Origin 350 is a Shared-Distributed cache coherent
- nonuniform memory access (ccNUMA) architecture
machine, consisting of eight R16000@600MHz type proces-
sors with 4 MB Level 2 cache memory each. The total
memory is 4 GB and the operating system is IRIS ver-
sion 6.5. The applications are developed in double pre-
cision Fortran code using the MPI standard for MipsPro
compilers version 7.4, which also incorporate the scien-
tific library LAPACK.

The Figures 5 and 6, below, present the speedup mea-
surements of the parallel algorithms, using up to eight
processors, for B-GS preconditioned Bi-CGSTAB and
SOR methods respectively with discretization ofns =
64, ns = 128 andns = 256 subintervals.

1 2 4 8
0

1

2

3

4

5

6

7

8

9

Number of Processors

S
pe

ed
up

 

 

Linear Speedup
ns=64
ns=128
ns=256

Figure 5 : Speedup measurements for Bi-CGSTAB.
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Figure 6 : Speedup measurements for SOR.

As seen in the above figures the speedup is almost lin-
ear for up to 4 processors for both methods. For the
8 processors, available in our case, finer discretization
yielded almost scalable performance. As a note, we
add that the discretization forns = 256 corresponds
to solving a linear system with262, 144 equations and
unknowns.
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