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Abstract: The quasi-entropy Sy(p,0) = Trp'/ 2g(L(,R;l)pl/ 2 introduced by Petz is used as a class of con-
trast functionals of two invertible density matrices p and ¢ in finite state spaces to show the uniqueness of the
Wigner-Yanase-Dyson metric and the dual a-connections with respect to it: namely, by expanding S,(p, o) in the
difference between p and o to show that, with Fréchet derivatives D, and D, up to third order on an asymmetric

convex operator function g(z) € Gasym for which Sy(p, o) # Sy(a, p),

D/%Sg(Pﬂ)(AaB)] = ”DUDPSQ(/)>

g=p
~D2D,S,(p,0) (4, C,B)]

o=p

a)(4, B)

=g"()K(4, B),

o=p

= ¢"(1)T¥9 (4, C, B) with its dual form p <+ o (@) « T9)*

hold, if and only if the resulting metric K9 is identical to one of the WYD metrics K'Y P(@). and the dual

connection I'(9)

= I'(#2) with « being specified by |a| = 3 + 2L,

/”(1)
ll(l)
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non-selfdual quasi-entropy.

1 Introduction

One of the major results in classical information ge-
ometry initiated by Chentsov[3] and reformulated by
Amari[4] is the uniqueness of the Fisher information
metric and a pair of dual connections with respect
to this metric: it selects these two objects among all
those derivable by differentiations up to third order
of invariant divergence functionals of two probabil-
ities D(p,q) ( a functional D(p,q) is invariant by
a transformation of the random variable z in p,q,
if D(p1,q1) = D(p,q) for p = p1,q¢ = qi[4]).
Namely,

“the Fisher information K is the only metric in-
troduced by any invariant g-divergence Dgy(p,q)
with unspecified convex function g, and the +a-
connections T'*®) are the only connections intro-
duced by the same divergence, where « is given by
the following identity”

o] = 3+29m((11)) (1.1)

a concise statement of a theorem by Amari, who rep-

resented it in two identities, as
(1) 3:9;D4(p(0),p(6)|,_, =
~0:0; Dy(p(6),p(9)),,_, = 9" (VKL (6)
(2) - 80,0, Dy(p(6 >,p<e'>> by =9 (TG

r Ej— o ) by interchangingd; < 8! ete..

— 0 /
In the above identities, 8; = 55, 0; = 59-,; etc. for

the parameter sets {0} and {¢' Z} defining a given
statistical model; we abbreviate p(z, {6'}) by p(6).

The implication of (1) is that either 1st or 2nd term of
the left side in (1) is equal to g” (1)K (), and that of

(2) to represent the coefficient of connection I‘(O‘) ()

which indicates the duality F( o) L (0) = l"(a) (9),
when each pair of primed and unprlmed denvatwes
are interchanged before setting ' = 6.

The present paper is a continuation of the preced-
ing article,Noncommutative Analysis: Application
to Quantum Information Geometry, referred as I
hereafter. Our purpose here is to extend the above




uniqueness theorem to a non-commutative(quantum)
framework of information geometry. We show that,
if the underlying statistical manifolds are generalized
to finite quantum states (i.e. finite dimensional matrix
manifolds), the uniqueness theorem above holds with
three modifications in equalities (1) and (2):

(a) the g-divergence Dg(p,q) is replaced by the
quasi-entropy Sg(p, o) of Petz(1986)[12] for fi-
nite quantum states, with p, g being replaced by
two invertible density matrices p, o, respectively,
and the g-function in S¢(p, o) is operator convex,
which is assumed to belong to asymmetric class;

g™el(z)(= mg(z71)) # g(z), 2 € MF[cf. T]

(b) each §; is interpreted properly to be the respec-
tive Fréchet partial derivative [cf. I]

(c) The Fisher metric KJ(f) expressed in (1)
is replaced by the class of Wigner-Yanase-
Dyson(WYD) metrics[7][8] K WYD(O‘)(G) with
« being specified in the same way as eq.(1.1)

ie. |a] =3+ 25;/,—7((%)1 which is shown to ensure

|| < 3 automatically.

With these modifications, we verify that (1) and
(2) are true if and only if the metric is identical to
one of the WYD metrics K"WYP()(9) apart from
a normalization constant ¢”(1), and I'*=®) are a

pair of torsionless dual connections with respect to
KWYD(O:).

In I, we presented a feature of quantum informa-
tion geometry on the basis of the Fréchet differential
formula (D) for matrix-valued function ¢(p) of a
hermitian variable p in terms of the sum of its com-
mutative part and the commutator part, and discussed
information metrics and relative entropies both
having monotone decrease by stochastic maps. Here
we ' specialize to the question of uniqueness of the
Wigner-Yanase-Dyson metric and the o quasi-entropy
which enables us to achieve the above-stated result.
From I, we can foresee two obstacles to be overcome
which do not exist in the classical theory[4]: the
limited allowed range of the WYD metrics, and
the distinction of asymmetric vs symmetric convex
functions.

Before going, it is necessary to add one more
comment on the prerequisite for the convex g-
functions, either classical or quantum, to ensure the
specification of the a-value in eq.(1), implied by the
stated uniqueness theorem. That is, the function g in
a pertinent convex set must be an extremal point of
this set, because otherwise it cannot exclude the pos-
sibility of convex combinations of g’s with different
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a. So, we first discuss several preliminaries in Sec.2
and 3. In Sec.4 we present two characterization the-
orems in detail. Then, we proceed to the statement
of the result shown in abstract and its parametrized
scheme.

2 Preliminary 1: Convex functions
and their convex set

2.1 Basic matters (some elementary facts
in functional analysis)

Definition 2.1 A real, continuous function f(X);

X € M! s MP s operator monotone of order n,
if X <Y (Y- X >0) implies f(X) < f(Y).

If f is operator monotone of order n foralln € I, f
is said just operator monotone [1].

Definition 2.2 A real, continuous function g(X); X €
M?P s MP! is operator convex of order n, if for all
n X n hermitians X and Y and for all real numbers

0 < X <1, the following inequality holds:

GOAX + (1= NY) < Ag(X) + (1= A)g(¥). (2.1)

If g-is operator convex of all orders, g is said just
oprator convex[1]. We consider the set of operator
monotone functions and operator convex functions
which are denoted by F and G, respectively. The
concept of operator monotonicity and operator con-
vexity on matrix functions are closed by taking lin-
ear combinations with positive coefficients, and point-
wise limits in sequences: namely, consider a subset
{fa} € For{g,} € G;n=1,2,..; and a set of posi-
tive numbers {a, > 0}. Then,

fi, f2 or g1, g2 anda; >0(t=1,2) =

a1fi+asfr € Fyoraigr +aga €G.  (2.2)

In particlar, the case » ;' a; = 1 is called a convex
combination. Also, consider a sequence {fp;n =
1,2,.;fn € F} and {gn;9» € G}, which are as-
sumed to converge pointwise to f and g, respectively.
Then, limy, 00 fr € F, and limy, 500 g € G [1].

2.2 power functions

It is known that power functions of the form z?; (z €
R*) p € R yield primitive examples of operator
monotone/convex function for which the range of in-
dex p is limited:  this is specified in a list of the
respective set of linearly independent power functions
as follows.



list of operator power functions
(m) =2 (-1<p<0); 2 (0<p<);
—zP, (1 < p < 2) (operator monotone) (2.3)
(@ (-1<p<0); -z (0<p<1)
2 (1<p<2) (operator convex).  (2.4)

In I, we have introduced a specific operator convex
function g(z) for the purpose to define a general-
ized relative entropy[l4](we call it “quasi-entropy”
following Petz[12]) denoted by Sy(p,0): it satisfies
g(1) = 0. Let us denote such a convex function
in the class (2.4) by gp(z): it may be of the form
gp(z) = cp(1 — 2P), where ¢, is defind properly as

1—aP
p(1-p)
g(1) = 0; and g"(1) = 1 for normalization. (2.5)

gpowev’ - {gp(33)}3 gp('r) -

This is a subset of all continuous functions R*
R; C(R™), and we consider its convex subsets G such
that Gpower C G C C(RT). We follow two definitions
in functional analysis[16].

Definition 2.3 extremal element of a convex set G:
it is an element € G which cannot be expressed as
Ag1+ (1= XN)g2; g1g2 € G forany \;0 < A < L.

Definition 2.4 convex hull of a subset V: Gy =
{8 awisa; > 05 35, a5 = 1},

A convex hull of a subspace V' of a vecor space
is identified to be the minimum convex subset that
contains V, and we consider the convex hull of
Gpower» €4.(2.5), which is dennoted by C(Gpower) SO
that Gpower C C(Gpower) C CRT holds.  Then, we
have

Lemma 2.1

Each function gp(x) € Gpower Is an extremal element
of C(Gpower) i.e. for any real number A; 0 < A < 1,
g # MY+ (1= Ng@; foranyg™,¢? e
gpowe’r and g<1) 7é 9(2)

proof. Let ¢ = ,aYg, and g® =
5 aPg,.5 0 < al*™® < 1, and consider the equal-
ity gp = Agt)) + (1 — A\)g@. The right-hand side
of this equality is the sum of terms (Aagl) + (1 -

)\)a?))gpi so that each coefficient is of the form

AaD+(1-2)a® < aMora®, depending on aV) >
a® orviceversa,and < 1. Therefore, the coeffi-
cient of the term g, on the right-hand side is nonneg-
ative and smaller than 1. Thus, this term, if nonzero,
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can be moved to the left-hand side to rearrange the
equality as g, = > _; b;gp,. However, this equality im-
plies that g, is linearly dependent on all other gz’, S,
which contradicts the linear independence of the set
(2.4). This means that g, # Ag™M) + (1 — A)g®,

end of proof.

2.3 Symmetric and asymmetric class of con-
vex functions

In I, we have introduced two classes of operator
convex functions Gy = {g; g(z) = g**!(z)} and

gasym = {g,g(m) fié gd““l(m)}, where besides
continuity and g(1) = 0 for g(x),

ghal(z) = 2g(a™)  (9(e) = ()" o)
(2.6)

exemplified by g2 (z) = g1_p()).

It should be remarked that the distinction of the
two classes Gym, Gasym is indispenssable to get the
proper solution of the uniqueness problem which is
absent in the classical theory[4].

Definition 2.3: equivalent class of dual pairs
(Gibilisco and Isola[16]) (¢(z), x(x))

is called a dual pair, if x(z) = ¢®™(z). In gen-
eral, for a given dual pair (wo(z),xo(z)), any pair
(p = Apg + B,x = Cxo + D)(z) with AC =1
can be a dual pair to yield the same metric form by
each Fréchet differentiation.

3 Preliminary 2: Second and third
Fréchet derivatives

Di¢(X)(A,4) =

[[p(X), A(A)], A(A)] = Dxop(X) ([[X, Aal, Aal)

(Dg)
D%p(X)(A A, A) = [[[p(X), Aal, As], Ad]
_3D§(90(X)([X7 [X, AA]]’ [X7 AAD

~Dx ([[[X, Aal, Aa], Aa))- (Ds)

These formulas are given by Bhatia and Sinha, who
discussed a general construction of the relations be-
tween derivations and Fréchet derivatives[17].



3.1 Another derivation of Lesniewski-
Ruskai formula (Theorem 5.3in 1)

By taking an inner product of the left and right sides
of (D9) with an arbitrary function A(X), we have

TrD%o(X)x(X) = Trlp(X), Aal[x(X), Aa)

+TH[X, Aulle' (X)x(X), Aal. - (3.1)

Lemma 3.1 In the tangent space TzM at a fixed
X, the equality between the inner product of D%
and x and the Riemannian metric form of Morozova-
Chentzov and Petz type i.e.

TeD% (A, B)x(X)(= (Dx@(X)(4, B), x(X)))

= Tr("(X)x'(X) + [p(X), Aa]x(X), AB}()S, .
holds, if and only if the pair of the operator func-
tions o(X) and x(X) satisfies ¢ (X)x(X) =
constant x 1.
proof. From eq.(3.1) it can be observed that
the desired equality holds, if and only if the sec-
ond term on the right-hand side vanishes i.e.
[©"(X)x(X), A4] = 0 for all tangent vectors. ~ This
is possible if and only if ¢'(X)x(X) = constantx1.

end of proof.

Remark 3.1 An operator dual pair (¢(X) =
XP x(X) = X!'"P)meets the statement of this
lemma. However, this does not imply to ensure that
the resulting metric satisfies the monotonicity condi-
tion, as it does not specify the range of the p-indices.
It only indicates the first equality in the extended
Lesniewski-Ruskai formula (5.13) of Theorem 5.3 in
I. Therefore, not only the WYD metrics but also the
power-mean metrics in I are shown to satisfy the iden-
tity (3.2), where it has been seen that the latter metrics
can be represented as a power seris of oprator dual
pairs with indices unrestricted to the list (2.3).

3.2 Representation by means of divided dif-

ferences[1][18]
Dxo(X Zgo (A, Aj)Asjes;, where
P\, ) = { . )
©'(A) A=p
Dip(X = > @06 05 M) Aig Ajieir
0k
; oM (i, Aj) = M (g, M)

where <p[21(/\i, Aj, Ak) =

Ai — A
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Qi) =) ey =)
A=A = Ak) - (= ) (A = Aw)’
P06, 0) = 56 O0), 9N a,0) = 59" (),

(3.4)

3.3 Dual affine connections|[4]

Hereafter, we recover density matrices as the non-
commutative object variable X to discuss quantum
info geometry in third order of derivatives in the
tangent space i.e. i.e. affine connections: by relaxing
the normalization Trp = 1 instead 0 < p and
Trp < oo.

Given a Riemannian metric of Morozova-
Chentzov and Petz type[5][6] in terms of a pair of
functions (p(p), x(p)) be given:

K,(A, B) = TrDpp(p)(A) Dpx(p)(B).

Another pair of quantities associated with the above
metric form:  (PX(C, A, B), TX*(C, B, A)) is
called affine connections which are dual with respect
to the metric K, i.e.

I (C, 4, B) = TtDyp(p)(C, A)Dpx(p)(B);
D;x(p)(C, B).

(3.5)

Note that the second derivative D?-(C, A) in ordinary
situation is symmetric with respect to the two tangent
vectors A and B: this case is called “torsionless”.
Our task in Sec.5 is to verify the unique identification
of torsionless connections to the -« connections with
duality.

DK+ (C, B, 4) = TeDyip(p)(4)

4 Characterization theorems in dual
geometry

4.1 Characterization theorem for the WYD
metrics

Theorem  4.1(Hasegawa[9] suplemented by
Gibilisco-Isola[15]; an improved version of

Theorem 3.3 in I)

The Wigner-Yanase-Dyson information is a symmetric
monotone metric defined on matrix spaces whose MC
function is given in terms of a dual pair (p(z), x(x))
such that

_ () = o) (x(N) = x(u))
o) = I (4.1)
where the product p(z)x(z) satisfies ©(0+)x(04+) = 0.
(4.1a)



Conversely, if a metric is defined on matrix
spaces in terms of a pair (p,Xx) of the form
TrD,p(p)(A)D,x(p)(B) and is monotone in the
sense of Moroziva-Chentsov and Petz ( Theorem 3.1
in I) with property (4.1a). Then, it is identical to one
of the WYD metrics.

proof.
the former part We recall the first-order divided
difference representation of the Fréchet derivative

(eq.(3.3))

' Aij)eij, (4.2)

7 Xi — Aj
and set ¢(p) = pP (p > i Ai€i).  Similarly,
x(p) = p*~P. Then,
TeD, P (A)Dpp P (B) = 3 e(hi, Aj) A3 B,

7
with MC function, and Petz function being
(¥ — ) OIP — i)
(A—n)?
@-DEr-1"

respectively. We show an explicit proof of the mono-
tonicity of this metric by using the integral represen-
tation of the latter function. Namely,(cf.[9])

1 :smpw/ DA~
TwyD(p) (@) m Jo

/ds/ at 1—t)t)\—l-(11—s)

0<p<l)

givenby c(\, u) =

and f(z) =

(A +s)’
(4.4)

Smpﬂ'/ Do ipl/ /

z(l—t)+1t

=D+ (1= 5 T T s)?

(4.5)
which are obtainable from the integral representation
of fractional-power functions: namely,

. 0o p—1
L L 0<p<1),

T 0 Az

sinpr oo \~IPl
= dA (=1 <p<0), (4.6
| ot Cr<p <0, @)

(-1 <p<0).
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together with additional twice elementary integra-
tions(See [9] for details). The fact that the inte-
grand of egs.(4.5) and (4.6) is an operator monotone-
decreasing function of = enables us to conclude that in
the left hand side fyy p(p)(z) is opearator monotone.
We note that the special cases of p values at 0,1 can
be fixed by taking the limits in eq.(4.3): Namely,

z—1

(BKM metric[23]).

(4.7)
The monotonicity of this metric is ensured by the
closedness property presented in Sec.2.

Forp # 0,1, w(z)x(z) = (p(1 - p)) 'z,

and for p = 0, orl, o(z)x(z) = zlogz “=3" 0.

fVVYD;(p:O)(x> = IOgZB

the latter(converse) part If a Riemannian
metric on matrix spaces is given of the form
TrDyp(p)(A)Dyx(p)(B) which is monotone in
the sense of Morozova-Chentsov and Petz, the MC
function (4.1)must satisfy condition

(i) continuity
(i) Fisher form for A — u;c(A, p) = ¢(A) = 1/

(iii) (—1) th wniformity c(tA,tp) = t7te(\,p).
In terms of ¢, x functions +1-th uniformity
P(EN)X(EA) = to(A)x(A).

(1) We assume futher the smoothness(differentiability)
of the function ¢(z) and x(z).

(i) This condition leads to ¢'(z)x'(z) = =, as
(0(y) — 9(2))yr0 = ¢'(z) and same for x.

(iii) By taking the uniformity parameter ¢ large, it can
be seen that a function h(z) = ¢(x)x(z) determines
its behavior near x ~ 0+, and we use the condition
(4.1a) which states that ¢(0+)x(0+) = h(0+) = 0.
This implies that $h(tz) = h(z) on one hand, and
Lh(tz)|s—04+ = K/ (z) on the other, so that we obtain

f;’((;)) = 1 leading to h(z) = cz;withe(> 0), a

positive constant.

Accordingly, we have a simultaneous differential
equation for ¢(z) and x(z) as

1 !
::y~3+—3:0, if we set y:(’p(x)
T cr

Possible solutions for eq.(4.8) are given, via



1+4/1—-4/c

y=-—g— > by

o(z) =2P x(z)=2z'"P with

p_1+\/1—4/c_ 1 _1-y/1-4/c
s LrE ey

2
for ¢ < oo, obtaining
c=——" 0<pl-p<l. 4.9
p p,l1—p (4.9)
For ¢ = oo (p = 0orl),
p(z) =z x(z)=logz, (4.10)

1
and w'(z)zlﬁx'(m)z;.

However, eq.(4.8) is not the all possibilities to charac-
terize the indices of the set up dual pair (p(z), x(z))
for the MC function, as the above classification
excludes the case ¢ = p(1 —p) < 0.

We have another possibility of differential equation
for o(z) and x(z):

1
¢ ()X (z) = =, pla)x(z) = cx
2, Y 1 . X/(m)
=y +m+cm2 0, ifweset y (@)

This is because x(z) = c(p(z))™" yields X (z) =
—-%(m). On the other hand, since the first two equal-

ities in eq.(4.8) are totally symmetric with respect
to the constituent functions of the pair, ¢ and Y,

the quantity %‘é(m) = gy must also satisfy the same

quadratic equation as (4.8) so that y(= x'/x, and
= ¢’ /) should obey both equations simultaneously:

(“)yQ“L%‘LE%?’ = 0; (b)f—%é—g =0. (4.11)
Hence,
p = 1+\/§:Z/?, 5= —1— 21-4/c — _p, and
lop= 1~\/;—:47Z 1—p= —1+4 21——4/0'

The possible range of the indices fixed is given by
(a)(c>0): 0<p<l; 0<1l—-p<O
(b)(e<0): —1<p<0; 1<1-p<2 (412)

end of proof.
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Corollary 4.1

In the paired monotone metrics (o(x),x(z)), the
Morozova-Chentsov condition of (—1)th uniformity (
(iil) of theorem 3.1 in I) is fullfilled by the por, (1 —
p)-th uniformity of each function of the pair: namely

o(tz) = tPp(z), x(tz)=t""Px(z);

in particular, for the BKM metric

o(tz) = tp(z); x(tz) = x(z) (or, viceversa).
(4.13)
Remark 4.1 In [15], Gibilisco and Isola obtained the
result of this corollary for case (b) in eq.(4.12) ( case
of negative ¢ in the above proof) independently of the
second differential equation (b), but in a context of
regularly varying functions.

Corollary 4.2(Gibilisco and Isola[15])
Difference between two cases (a) and (b) can be char-
acterized by the behavior of the dual pair o(z), x(z)
(@) (0+) = 0 x(04) = 0;
(b)p(0+) = —o0, x(0+) = 0or, vice versa.(4.14)

4.2 Characterization theorem for the quasi-
entropy with duality

We begin by recalling the correspondence theorem
of Lesniewski-Ruskai[ 14](Theorem 5.2 in I); namely,
There exists one-to-one correspondence between (an
operator) monotone decreasing function k(x) and a
symmetrized quasi-entropy Sy(p,0) + Sgavat (p,0):

dual

o) = g@)(.: - 1)? 9 0) € Guam

(4.15)
However, it does not state the one-to-one correspon-
dence between the monotone-metric function and the
asymmetric convex function g(# ¢%!) associated
with S,. This question is of a special interest from the
viewpoint whether the power index p that specifies the
WYD metric also specifies uniquely the asymmetric
convex function g, (z), €q.(5.9) in I. The affirmative
answer to this question is now stated, which is revised
from the context in [9].

Theorem 4.2(revised version of Hasegawa[9]
Theorem 4.1)

Let a real, continuous convex function g(z) which
belongs to Gasym be given. Then, its Lesniewski-
Ruskai correspondece equation (4.15) provides
the WYD metric k-function, if and only if the pair
(g(x), g™ (x)) is identical to an equivalent class
which satisfies g(1) = 0 of one of the dual pairs
(zP,z*7P); or (—logz,zlogz) (this itself satisfies




g(1) = 0).

proof.

the “if part” For p # 0,1 the dual pair
(cpa®, 1 7P) has an equivalent class (cp(1 —2P), (1 —
z'7P)) withc, = Hll—_pﬁ’ and their product yields

ep(l 4z — 2P — z17P)

kwy Dps0,1)(T) =

(z —1)?
_cpaP — 1)(x1‘p - 1)
- (z—-1)? ’
—logz + xlogzx
k’WYD(p:O,l) (JJ) = (IL‘ — 1)2
= ;Of ‘71 ( BKM metric). (4.16)

the ‘“omly if part” We may assume a pair
(p(z), x(x)) in the representation of the MC function
c(A, 1) in eq.(4.1), and ask under what circumstance
it agrees with the equivalent class of the power dual
pair (zP, x'~P), if the convex g-function is written in
the form

_ = o(=)( - x(=))
g(.’]?) - (1 _ £L')2

€ Gasym, (4.17)

where the dual pair (¢(z), x(z)) is conditioned, be-
sides (1) = x(1) = 1, by

i) + lthuniformity p(tz)x(tz) = tp(z)x(x);
i) duality x(z) = o™ (z) = zp(z™*).(4.18)
By Corollary 4.1, we may also require that the uni-
formity for o(z) i.e. with some parameter p i)
o(tz) = tPp(z). Accordingly, we now need to show
that, under requirements in eq.(4.18) with i) strength-
ened by '), the dual pair (¢, x) is identified to be
(zP,z'~P). The numerator of expression (4.17) for
g(x) can be rewritten as 1+o(x)x(z)—¢(z)—x(z) =
1+ zp(z)p(z™t) — o(z) — zp(z), and noting
that 19uel — x; z%al — 1 we see that, in order
for eq.(4.17) to agree with the Lesniewski-Ruskai for-
mula (4.15), it is necessary and sufficient that the
functional equation ¢(z)p(z~!) = 1 holds. We ver-
ify the following statement. Namely, consider a real,
continuous function ¢(z); z € R™ with property

i) p—thuniformity o(tz) = tPo(z);
1) o(z)e(z™) = 1. (4.19)

The only function equipped with this property is the
power function ¢, (z) = z?, because fromii) p(1)? =
1 = ¢(1) = 41 which is inserted into i') to yield
o(t) = &tP: we take the + convention and replace
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t by =. The operator convexity requires p € [—1,2].
end of proof.

Corollary 4.3

In the gap region between the Bures metric and the
minimum of the WYD metric (p = 1/2) which is filled
by the power-mean metrics, no member of Gagym With
duality exists.

5 Uniqueness Theorem

5.1  On the uniqueness of the Lesniewski-
Ruskai asymmetric g-functions

Theorem 5.1

The only convex operator functions g(x) € Gasym are
those to define quantum o-divergence[13] (identical
to those defined in the classical version [4] except the
forbiddenness |a| > 3) i.e.

4 lie
go(z) = 1_a2(1——x T ); a# 1, |af <3, and
zlogr a=1
{—10gaj a=—1 all S gasym~ (5.1)

proof. This is obvious, since by Corollary 4.3
no WYD metric f-functions are located in the
gap region, as can be visualized in Fig.l in L

end of proof.

5.2 Uniqueness of the dual £« connections

In [9], we made an argument on the uniqueness of the
dual affine connections associated with the WYD met-
rics under the assumption that the extent of monotone
metrics on matrix spaces are paired metrics: this was
not sufficient. The result is expected to hold, when the
underlying metrics are extended to general monotone
metrics. (See related papers on the uniqueness of dual
connections[22][23][24].) Here, we show that this is
the case. To avoide an unnecessary complication, we
assume that second Fréchet derivatives are torsionless.

Theorem 5.2

The only monotone metric on matrix spaces(in the
sense of Morozova-Chentsov and Petz) with respect to
which each of the two connections derivedby a first,
and a second Fréchet differential, are dual to each
other is the WYD-metric parametrized by =a; 0 <
|a] < 3. (@ = 0is excluded from the dual-connction
viewpoint.)

First, we show a proposition from Theorem 5.3 in I,
also Lemma 2.1 and 2.2 as follows.



Proposition 5.3

Every monotone metric defined on (finite dimensional)
matrix spaces can be expressed as a sum, either finite
or infinite, of trace funcions of the form

Y CaTx[p™™, Aullp' ", App™ ™ (5.2)

n>0

which can be classified into two cases as follows.

Case A. finite sum the sum belongs to the convex
hull of G,, which is identified to be a convex
combination of the WYD(« # 0) metrics, and
is classified into non-selfdual class; S(o,p) #
S(p, o), where the dual connection is possible.

Case B. infinite sum the infinite part belongs to self-
dual class S(p,o) = S(o, p): the only connec-
tion possible for this is the metric connection [4].

The BKM metricC(WYD metric with « = Z£1) for
which the dual connection is possible[23] may be
classified in A, as a point-wise limit of the WYDa.

proof of Theorem 5.2 By definition of 5.1
in I, a non-selfdual quasi-entropy S(p, o) is asso-
ciated with an asymmetric convex function g #
gd““l, and Theorem 5.1 tells us that it is identified
to be one of a-divergence with 0 < |af < 3.

end of proof.
( Details of Proposition 5.3 will be given in a paper of
a WSEAS journal.)

6 Concluding Remarks: Amari form
of uniqueness theorem

nonparametric form

(1) D3S(p;0)(A, B)

o=p

= =Dy D,Sy(p,0)(A, B)| _ = ¢"(1)K(4, B),

o=p

(2) = D}DoSy(p,0)(A,C, B)| _=g"(1) x

o=p

) (A, C, B) with its dual form
p+ o;T9(A C B) & I'9*(4,C, B).

A satisfaction of equalities (1) and (2) by an unspeci-
fied operator convex function g is possible, if and only
if it is selected from the convex hull in the sense of
Sec.2.1 i.e. C(Gasym), restricted to its extremal ele-
ment, which identifies itself with one of quantum -
divergence and the resulting metric with the corre-
sponding Wigner-Yanase-Dyson metric.
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Remark 6.1 on eq.(1.1)

g"(1)

g'(1)

This equality is valid also in the present non-
commutative version of information geometry: it
stems from the fact that every Fréchet derivative
D,D? D3, .. contains the first commutative part de-
noted by D¢, (D¢)?, (D¢)3, .., each reduces to the or-
dinary derivative by the projection onto the commuta-
tive part of the tangent space. We can write the expan-
sion Sy(p, p + dp) up to O(dp)? as[4]

la| =3 +2

1 C 1 C
Sq(p, ptdp) = SK(p, p)(d°p)*+ HO (p)(d"p) "+,
where for a dual pair ¢, x, the above expansion can be

written explicitly (cf. eq.(3.4)), as

- 1—xa
g1 = ~g") (1+ =5

)e (6

from which +a = 3+ 2’; l,',l((ll)) can be deduced. Then,
the only noncommutativ/commutative difference in g
is the operator convexity of g, or equivalently the
operator monotonicity of —g, which is known to be
completely monotone [1] with ocsillating successive
derivatives i.e. ¢'(1) < 0,¢"(1) > 0,¢"(1) < 0,...
Thus, it ensures the inequality |a| < 3.

parametrized form based on Sec.4.2 in I

(1) 0:0;594(p(6), p(6"))
= —0:0;84(p(0), p(6"))

6'=6

/) F
0'—=0 =g (1)Kz] (9)

(2) = 0i0;0,84(p(6), p(0))|,,_,

=g" (1)1’5}",{, I“E;f‘ ) (by interchange 9; ++ dletc.),

where Fréchet partial derivative is defined by

_ 9%
TE

Bip(p(6))(A) AS + [p(p), Aay].
K(A,B)y; =
(Ap10:p0;pB5) + Tr([0(p), Aalx(p), As;))-

In conclusion, we wish to point out that the
uniqueness of the «-divergence contributes to the
same question for the relative entropy in Tsallis
statistics[19]-[21].
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