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Abstract: We have suggested the numerical schemes of collocation methods for approximative solution of singular
integro- differential equations with kernels of Cauchy type. The equations are defined on the arbitrary smooth
closed contours of complex plane. The researched methods are baseérquoids. Theoretical background of
collocation methods has been obtained in Generalizi@dét spaces.

Singular Integro- differential equations, FEgjpoints, Generalized dlder spaces:

1 Introduction 2 Theorem on approximation of
functions by Lagrange polynomi-
als

Singular integral equations with Cauchy kernels (SIE)

and Singular integro- differential equations with | etT be an arbitrary smooth closed contour bounding
(_Za}uchy kernels (SIDE) mpdel many p_roblems inelas- 4 simply- connected regioR+ of complex plane, let
ticity theory, aerodynamics, mechanics, thermoelas- ¢ — () ¢ F+, F~=C\{F+tUT}, Cis the complex
ticity, queueing system analysis, etc.[7]-[11] plane.

Let z = ¢(w) be a Riemann function, mapping

conformably and unambiguously the outside unit cir-
cle{|w| = 1} on the surfacd’~, so thaty)(cc) = o,

The general theory of SIE and SIDE has been
widely investigated in last decades [12]-[16].

The exact solution for SIDE can only be found in ¥ (00) = 1. .
rare specific cases. That is why the necessity existsto By w(d) (6 € (0,1],1 = oax |t —t |)we denote

elaborate numerical methods for solving SIDE with . ot &L
the corresponding theoretical background. the arbitrary module of continuity and b¥/(w) we

denote the generalizedittler space [1],[2] with norm

The problem of numerical solution for SIDE by lgllw = llgllc + H(g;w); 1)
collocation methods has been studied in [17]-[18]. .
The equations have been defined on the unitcircle.  ||g||. = max|g(t)|, H(g;w) = sup <W(gv 5)> :
) tel s€(0,1] w(é)
. The case, hovyever, when the contour of Integra- oo thew(g; 0)is the module of continuity for func-
tion can be an arbitrary closed smooth curve (not unit tion g(¢)onT.

circle), has not been studied enough. Transition to an-
other contour, different from the standard one, implies
many difficulties. It should be noted that the confor-
mal mapping from the arbitrary contour to the unit
circle using the Riemann function does not solve the /w(f)dg < @)
problem, but only makes it more difficult. oo

§

We consider only the spacés(w) with the mod-
ule of continuity satisfying the Bari- Stechkin condi-
tions: [2]

We note theoretical background of collocation ©Of
methods for SIDE in classicaldtder spaces has been h
obtained in [5], [19]. The equations have been defined /w(g)dg + 5/ @dg =O0(w(d)),6 — 0, (3)
on arbitrary smooth closed contours. § 5 §



By H"(w),r >0 (H®(w) = H(w)) we denote the
space of r times continuous- differentiable functions.
The derivatives of the — th order for these functions
are elements of spadé(w). The norm onH (") (w) is
given by formula

T

Hgllwr = D 119" + H(g";w).
k=0

(4)

Remind that ifw(d) = §%, a € (0,1], thenH (w) =
H, is the Hblder space with exponent

The spacé (w) is a Banach nonseparable space.
So the approximation of the whole class of functions
by norm (1) with the help of finite- dimensional ap-
proximation is impossible. But in some subset of
H(w) the problem can be solved in the affirmative.

Lett; (j = 0,2n) be a set of distinct points dn
By U,, we denote the operator, which maps any func-
tion ¢(¢) defined onl" into its interpolating Lagrange
polynomial defined by using the nodgs:
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3 Numerical schemes of the colloca-
tion methods

In complex spacéed,, (I') we consider the singular
integro- differential equation (SIDE)

(012 2) 5 14,0200 + 5,0~ [T
r=0 T / T—1

+% K. (t,7) 'as(r)(T)dT} = f(t),

r

teT,

S (8
where A, (t), B(t), f(t) and K,.(t,7) (r = 0,q) are
known functions of™; (%) (t) = z(t) is the unknown
function; z(") (t) = ddigt)
integer.

We seek a solution of equation (8) in the class of
functions, satisfying the conditions

1
3 /$<T)T_k_ld7' =0, k=0,q—1.
r

(r = 1,q); q is a positive

. . 1
Using the Riesz operatof? = §(I+ S),Q =1-P,

(where[ is an identical operator anfl is a singular
operator (with Cauchy nucleus)) we rewrite the equa-
tion (8) in the following form convenient for consid-
eration:

2n o AN n . q

b= I1 7= (4) = ¥ A, =00 (M) = % (40P + B (0@a) 1)+

k=g 3 Tk N r=-n T

©) 57 | Kot n)a (e = (0, ter,

The following theorem gives the deviation of La- 2mi J
grange polynomials and function in generalized ~ B _ (10)
Holder spaces [3]: where A,.(t) = A.(t) + B.(t), B:(t) = A.(t) —
Theorem 1. Letw; (6) andws(8) (§ € (0,1]) be mod- B.(t), r=0,q.

ules of continuity satisfying (2) or (3) and the function
O () = w1(9)/w2(0) is non-decreasing of0, ] . The
points make a system of Bejknots orl'[4]:

tj =1 (e:cp (25T1(j — n))) ., j=0,2n. (7)

Here z = ¢(w) is the Riemann function for contour
I". Then for any functiog(t) € H(w:), the following
estimate holds:

1
g = Unglles < (1 + dolum)® () Hgioon),

By di, k = 1,2,... we denote certain constants in-

dependent of..

Equation (10) with conditions (9 ) will be denoted as
"problem (10)-(9)".

We seek an approximative solutions of problem
(20)- (9) in the form of a polynomial

n -1
pa(t) = St 3 ek rer, (10)
k=0 k=—n
with unknown coefficients’,(fn) =& (k==n,n);
obviouslyz,(t), constructed by formula (11) satisfies
condition (9).

According to the collocation method, we deter-
mine the unknownsg,, (k = —n,n) from the con-
dition into inversion in zero the expressidi(t) =
(Mxy)(t) — f(t) in 2n + 1 different pointst; j =

0,2n,0nT :

(12)
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Using the formulae [5]

(Pz)"(t) = (Pz)(1), (Qx)T)(t) = (Qz")(®),
(13)
the relations
o _  (k+q)! —r o
(thtayr =i thta=r |k =0,n;
(t—k)(r) _ (_1)r (kj +r— 1)!t—k—r’ k= 13”7

(k—1)!
(14)
from (12) we obtain the system of linear algebraical
equations (SLAE):

Z{A Zn: ki;q TG+
- y(k+r—1)!
+B.(t) S (- i S
1 <« (k+9)

xthTe_ — X
J Ek+27r7j kz:%)(k+q—r)!

s / K, (tj, T)Tk+q_rd7 &kt
T

n k—i—r—l) 1
Py ayplErr DL
= - 2w

X Kr(tj,T)T_k_rdT k)=
!

= f(t;), j =0,2n, (15)
wheret;(j = 0,2n) is the set of distinct points of
andA,.(t) = ( )+ B(t), By (t) = Aq(t) — By(t),
r=20,q.

Let / (@ (w2) be subspace of spaé? (w»), the

elements from]ir(q) (w9) satisfy conditions (9) and
the norm is defined either as fi(? (ws) .

Theoretical background of collocation methods is
given in the following theorem:

Theorem 2. Let the following conditions be sat-
isfied:

1. the functions A, (t), B,(t), f(t) and K,(t,7)
r = 0, ¢ belong to the spac# (w );

2. Ay(t) £ 0, By(t) #0,t €T;

3. the index of functioquq—
Zero;

L(t)A,(t) is equal to

0 (Q)
4. the operatorM :H
vertible and linear;

(we) — H(ws9) is a in-

5. the pointst; ;7 = 0,2n form a system of Fey

knots (7) orl".

6. the function® (o) =
(0,1].

is nondecreasing on

Then, beginning witm > n; the SLAE (15) of col-
location method has the unique solutigp (kK =
—n,n). The approximate solutions, (¢) constructed
by formula (11) converge in the norm of space
H@(wy) asn — oo to the exact solution:(t) of
problem (10)-(9). Furthermore, the following error
estimate is true:

1
||z — 2 ||ws,qg = O <<I> <n) lnn>

4 Auxiliary results

(16)

We will formulate one result from [6], establishing

the equivalence ( in sense of solvability ) of SIDE (9)

and the singular integral equation (SIE). This result

we will use for proving the theorems of convergence.
Using the integral representations [6]

v(t)

d1(Pzx)(t) 1 "
q a
WCION N RO
dtd 211 J T—1

we reduce the problem (10)-(9) to the equivalent (in
terms of solvability) singular integral equation (SIE)

v(7)

—=dr
T—1 +

(©v =)t + 20 /

iy

+21mr/h(t,7')v(7')d7' =

for the unknown functiom(t) where

ft),te  (18)

[Ag(8) + 7B, (1)]

D(t) = 5 [Aqg(t) = t79By(t)] , (19)
h(t,T), is the Holder function by both variables. The
obvious formula for determiningj(¢, 7) can be found
in [6].

Note that the right-hand sides in (18) and (10) co-
incide by virtue condition (9).
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The equivalence of the existence of the solutions
between the SIE (18) and the problem (10)-(9) is the
result of the following lemma from [6].

Lemma The SIE (18) and problem (10)- (9) are
equivalent in terms of solvability. That is, for each
solutionw(t) of SIE (18) there is a solution of problem
(10)- (9), determined by formulae

(Pz)(t) = 2775((]12(]1)!/1)(7-)[(7- — ) 1x
r

AN
x In (1 — ) +) a1 dr, (20)

T k=1

Q)0 = o [etryr i — 7
r

q—2
7— -~
In{1—-—)+ a—k=14k1g
x ln ( t) gzo BT |d,

(6u, k =1,q— 1 and By, k = 0,q — 2 are real num-
bers) and vice versa for each solutiof¥) of problem
(10)- (9) there is a solution(t)

d(Px)(t)
ditd

,44(Qz)(t)
dta 7

v(t) =

to the SIE (18).

Furthermore for given set of linear- indepen-
dent solutions of (18), there are corresponding set of
linear- independent solutions of the problem (10)- (9)
and vise versa. In formulae (20)In(1 — ¢/7) and
In(1 — 7/t)( for given 7) there are the branches that
vanish at the points = 0 andt = oo, respectively.

+1

5 Proof of theorem 2

Using the conditions (12)

R,(tj) =0, j=0,2n (22)
we obtain that the (15) is equivalent to the operator
equation

where M is an operator defined in (10). We will

show that ifn > n; is large enough, then the oper-
atorU, MU, is reversible. The operator acts from the
subspace

n —1
Xn= {tQZ&tM 3 fkt’“}

k=0 k=—n

(the norm is defined as il (9 (w,)) to the space
X, = > itk (the norm is defined as iff (ws)).

k=—n

In similar way, by using the formulae (17) we rep-

(P o d"QE)
q

resent the functions 71
Cauchy type integrals with the same densityt) :

di(Pxz,)(t) 1 U (t)
R _QM_F/T_th, te Ft (23)
d(Qmz,)(t) _ t71 ‘e F-

vn(t)
= — d
dtd 2mi F/ ——

By T,, we denote the polynomial class of the form

where~;, are arbitrary complex numbers.
Using formulae (13) and relations (14) we obtain
from (23)

and sov, (t) € T,,.

Using (23), Eq. (22) as well as problem (10)-
(9) can be reduced to an equivalent equation (in same
sense of solvability)

U,0U,v, = Unfa (24)

treated as an equation in the subspage Obviously,
the eq. (24) is the equation of collocation methods for
SIE (18). For SIE the collocation method was con-
sidered in [2] where sufficient conditions for the solv-
ability and convergence of this method were obtained.

From (23) andv,(t) € Y,, we conclude that if
vp(t) is the solution of equation (24), then(t) is the
discrete solution of the systeth, MU, x,, = U, f and
vise versa. We can determineg(¢) from relations
(20):

(1)

(P1)(0) = gy [ oDl (1) +
r
q—1
+ Z dkTq_k_ltk}dT, (25)
k=1



@)1 = g [l (-7

- 2mi(qg — 1) J

q—2
£ At
k=0
As was mentioned above, the functigg(t) is deter-
mined throughy,, () from (25) uniquely.
It follows if the equation (24) has a unique solu-
tion v, (t) in subspaceX,,, then the following relation

Yn(t) = zn(t) (26)

is true.

We will show that for Eq. (24) all conditions of
theorem 3[2] are satisfied.

From condition 1 of theorem 2 and from (19) we
obtain the condition 1 of theorem 3[2]. From the
equality

[C(t) = D)V C() + D(B)] = 1B, () Ay 1),

we conclude that indexes of functions @f'(t) —
D(t)]7YC(t) + D(t)] has to be zero which coincides
with condition 2 of theorem 3[2]. Note other condi-
tions of theorem 2 coincide with conditions of theo-
rem 3[2].

Becausé:(t,7) € H(w:) then the exact solution
v(t) € H(wr).

Assumptions 1)-6) in theorem 2 provide the va-
lidity of all assumptions of theorem 3 in [2]; therefore
the Eq.(24) witm > n4 is uniquely solvable. The ap-
proximate solutions,,(¢) of (24) converge to the ex-
act solutionu(t) of SIE (18) in the norm of the space
H(w9) asn — oo. Hence the operator equation (22)
and the SLAE (15) has unique solution for> n;.
From theorem 3[2] the following relation holds:

1
[0 = valloy = O (cp (n) lnn)

From (20), (25) and (26) we obtain

(27)

||z — $n|‘w2,q < v = vp]w,

From last relation and from (27) we have (16).
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