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Abstract:We have suggested the numerical schemes of collocation methods for approximative solution of singular
integro- differential equations with kernels of Cauchy type. The equations are defined on the arbitrary smooth
closed contours of complex plane. The researched methods are based on Fejér points. Theoretical background of
collocation methods has been obtained in Generalized Hölder spaces.

Singular Integro- differential equations, Fejér points, Generalized Ḧolder spaces:

1 Introduction

Singular integral equations with Cauchy kernels (SIE)
and Singular integro- differential equations with
Cauchy kernels (SIDE) model many problems in elas-
ticity theory, aerodynamics, mechanics, thermoelas-
ticity, queueing system analysis, etc.[7]-[11]

The general theory of SIE and SIDE has been
widely investigated in last decades [12]-[16].

The exact solution for SIDE can only be found in
rare specific cases. That is why the necessity exists to
elaborate numerical methods for solving SIDE with
the corresponding theoretical background.

The problem of numerical solution for SIDE by
collocation methods has been studied in [17]-[18].
The equations have been defined on the unit circle.

The case, however, when the contour of integra-
tion can be an arbitrary closed smooth curve (not unit
circle), has not been studied enough. Transition to an-
other contour, different from the standard one, implies
many difficulties. It should be noted that the confor-
mal mapping from the arbitrary contour to the unit
circle using the Riemann function does not solve the
problem, but only makes it more difficult.

We note theoretical background of collocation
methods for SIDE in classical Ḧolder spaces has been
obtained in [5], [19]. The equations have been defined
on arbitrary smooth closed contours.

2 Theorem on approximation of
functions by Lagrange polynomi-
als

Let Γ be an arbitrary smooth closed contour bounding
a simply- connected regionF+ of complex plane, let
t = 0 ∈ F+, F− = C \ {F+ ∪ Γ} , C is the complex
plane.

Let z = ψ(w) be a Riemann function, mapping
conformably and unambiguously the outside unit cir-
cle{|w| = 1} on the surfaceF−, so thatψ(∞) = ∞,

ψ
′
(∞) = 1.

By ω(δ) (δ ∈ (0, l], l = max
t′ ,t′′∈Γ

|t′−t
′′ |)we denote

the arbitrary module of continuity and byH(ω) we
denote the generalized Hölder space [1],[2] with norm

||g||ω = ||g||C + H(g; ω); (1)

||g||c = max
t∈Γ

|g(t)|, H(g; ω) = sup
s∈(0,l]

(
ω(g; δ)
ω(δ)

)
;

here theω(g; δ)is the module of continuity for func-
tion g(t)onΓ.

We consider only the spacesH(ω) with the mod-
ule of continuity satisfying the Bari- Stechkin condi-
tions: [2]

h∫

0

ω(ξ)
ξ

dξ < ∞, (2)

or
δ∫

0

ω(ξ)
ξ

dξ + δ

h∫

δ

ω(ξ)
ξ2

dξ = O(ω(δ)), δ → 0, (3)
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By H(r)(ω), r ≥ 0 (H(0)(ω) = H(ω)) we denote the
space of r times continuous- differentiable functions.
The derivatives of ther− th order for these functions
are elements of spaceH(ω). The norm onH(r)(ω) is
given by formula

||g||ω,r =
r∑

k=0

||g(k)||c + H(g(r); ω). (4)

Remind that ifω(δ) = δα, α ∈ (0, 1], thenH(ω) =
Hα is the Ḧolder space with exponentα.

The spaceH(ω) is a Banach nonseparable space.
So the approximation of the whole class of functions
by norm (1) with the help of finite- dimensional ap-
proximation is impossible. But in some subset of
H(ω) the problem can be solved in the affirmative.

Let tj (j = 0, 2n) be a set of distinct points onΓ.
By Un we denote the operator, which maps any func-
tion g(t) defined onΓ into its interpolating Lagrange
polynomial defined by using the nodestj :

(Ung)(t) =
2n∑

j=0

g(tj)lj(t), t ∈ Γ, (5)

lj(t) =
2n∏

k=0,k 6=j

t− tk
tj − tk

·
(

tj
t

)n

≡
n∑

r=−n

Λ(j)
r tr, j = 0, 2n.

(6)
The following theorem gives the deviation of La-
grange polynomials and function in generalized
Hölder spaces [3]:
Theorem 1. Letω1(δ) andω2(δ) (δ ∈ (0, l]) be mod-
ules of continuity satisfying (2) or (3) and the function
Φ(δ) = ω1(δ)/ω2(δ) is non-decreasing on(0, l] . The
points make a system of Fejér knots onΓ[4]:

tj = ψ

(
exp

(
2πi

2n + 1
(j − n)

))
, j = 0, 2n. (7)

Here z = ψ(w) is the Riemann function for contour
Γ. Then for any functiong(t) ∈ H(ω1), the following
estimate holds:

||g − Ung||ω2 ≤ (d1 + d2 ln n)Φ
(

1
n

)
H(g;ω1).

By dk, k = 1, 2, . . . we denote certain constants in-
dependent ofn.

3 Numerical schemes of the colloca-
tion methods

In complex spaceHω(Γ) we consider the singular
integro- differential equation (SIDE)

(Mx ≡)
q∑

r=0
[Ãr(t)x(r)(t) + B̃r(t)

1
πi

∫

Γ

x(r)(τ)
τ − t

dτ+

+
1

2πi

∫

Γ

Kr(t, τ) · x(r)(τ)dτ ] = f(t), t ∈ Γ,

(8)
whereÃr(t), B̃r(t), f(t) andKr(t, τ) (r = 0, q) are
known functions onΓ; x(0)(t) = x(t) is the unknown

function;x(r)(t) =
drx(t)

dtr
(r = 1, q); q is a positive

integer.
We seek a solution of equation (8) in the class of

functions, satisfying the conditions

1
2πi

∫

Γ

x(τ)τ−k−1dτ = 0, k = 0, q − 1. (9)

Using the Riesz operatorsP =
1
2
(I +S), Q = I−P,

(whereI is an identical operator andS is a singular
operator (with Cauchy nucleus)) we rewrite the equa-
tion (8) in the following form convenient for consid-
eration:

(Mx) ≡
q∑

r=0
[Ar(t)(Px(r))(t) + Br(t)(Qx(r))(t)+

1
2πi

∫

Γ

Kr(t, τ)x(r)(τ)dτ ] = f(t), t ∈ Γ,

(10)
whereAr(t) = Ãr(t) + B̃r(t), Br(t) = Ãr(t) −
B̃r(t), r = 0, q.
Equation (10) with conditions (9 ) will be denoted as
”problem (10)-(9)”.

We seek an approximative solutions of problem
(10)- (9) in the form of a polynomial

xn(t) =
n∑

k=0

ξ
(n)
k tk+q +

−1∑

k=−n

ξ
(n)
k tk, t ∈ Γ, (11)

with unknown coefficientsξ(n)
k = ξk (k = −n, n);

obviouslyxn(t), constructed by formula (11) satisfies
condition (9).

According to the collocation method, we deter-
mine the unknownsξk (k = −n, n) from the con-
dition into inversion in zero the expressionR(t) =
(Mxn)(t) − f(t) in 2n + 1 different pointstj j =
0, 2n, onΓ :

Rn(tj) = 0, j = 0, 2n. (12)
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Using the formulae [5]

(Px)(r)(t) = (Px(r))(t), (Qx)(r)(t) = (Qx(r))(t),
(13)

the relations

(tk+q)(r) =
(k + q)!

(k + q − r)!
tk+q−r, k = 0, n;

(t−k)(r) = (−1)r (k + r − 1)!
(k − 1)!

t−k−r, k = 1, n,

(14)
from (12) we obtain the system of linear algebraical
equations (SLAE):

q∑

r=0

{Ar(tj)
n∑

k=0

(k + q)!
(k + q − r)!

tk+q−rξk+

+Br(tj)
n∑

k=1

(−1)r (k + r − 1)!
(k − 1)!

×

×t−k−r
j ξ−k +

1
2πi

·
n∑

k=0

(k + q)!
(k + q − r)!

×

×
∫

Γ

Kr(tj , τ)τk+q−rdτ · ξk+

+
n∑

k=1

(−1)r (k + r − 1)!
(k − 1)!

· 1
2πi

×

×
∫

Γ

Kr(tj , τ)τ−k−rdτ · ξ−k} =

= f(tj), j = 0, 2n, (15)

wheretj(j = 0, 2n) is the set of distinct points onΓ
andAr(t) = Ãr(t) + B̃r(t), Br(t) = Ãr(t)− B̃r(t),
r = 0, q.

Let
o
H

(q)
(ω2) be subspace of spaceH(q)(ω2), the

elements from
o
H

(q)
(ω2) satisfy conditions (9) and

the norm is defined either as inH(q)(ω2) .
Theoretical background of collocation methods is

given in the following theorem:
Theorem 2. Let the following conditions be sat-

isfied:

1. the functionsAr(t), Br(t), f(t) and Kr(t, τ)
r = 0, q belong to the spaceH(ω1);

2. Aq(t) 6= 0, Bq(t) 6= 0, t ∈ Γ;

3. the index of functiontqB−1
q (t)Aq(t) is equal to

zero;

4. the operatorM :
o
H

(q)
(ω2) → H(ω2) is a in-

vertible and linear;

5. the pointstj j = 0, 2n form a system of Fejér
knots (7) onΓ.

6. the functionΦ(σ) =
ω1(δ)
ω2(δ)

is nondecreasing on

(0, l].

Then, beginning withn ≥ n1 the SLAE (15) of col-
location method has the unique solutionξk (k =
−n, n). The approximate solutionsxn(t) constructed
by formula (11) converge in the norm of space
H(q)(ω2) as n → ∞ to the exact solutionx(t) of
problem (10)-(9). Furthermore, the following error
estimate is true:

||x− xn||ω2,q = O

(
Φ

(
1
n

)
lnn

)
(16)

4 Auxiliary results

We will formulate one result from [6], establishing
the equivalence ( in sense of solvability ) of SIDE (9)
and the singular integral equation (SIE). This result
we will use for proving the theorems of convergence.

Using the integral representations [6]

dq(Px)(t)
dtq

=
1

2πi

∫

Γ

v(t)
τ − t

dτ, t ∈ F+ (17)

dq(Qx)(t)
dtq

=
1

2πi

∫

Γ

v(t)
τ − t

dτ, t ∈ F−

we reduce the problem (10)-(9) to the equivalent (in
terms of solvability) singular integral equation (SIE)

(Θv ≡)C(t)v(t) +
D(t)
πi

∫

Γ

v(τ)
τ − t

dτ+

+
1

2πi

∫

Γ

h(t, τ)v(τ)dτ = f(t), t ∈ Γ (18)

for the unknown functionv(t) where

C(t) =
1
2

[
Aq(t) + t−qBq(t)

]
,

D(t) =
1
2

[
Aq(t)− t−qBq(t)

]
, (19)

h(t, τ), is the Ḧolder function by both variables. The
obvious formula for determiningh(t, τ) can be found
in [6].

Note that the right-hand sides in (18) and (10) co-
incide by virtue condition (9).
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The equivalence of the existence of the solutions
between the SIE (18) and the problem (10)-(9) is the
result of the following lemma from [6].

Lemma The SIE (18) and problem (10)- (9) are
equivalent in terms of solvability. That is, for each
solutionv(t) of SIE (18) there is a solution of problem
(10)- (9), determined by formulae

(Px)(t) =
(−1)q

2πi(q − 1)!

∫

Γ

v(τ)[(τ − t)q−1×

× ln
(

1− t

τ

)
+

q−1∑

k=1

α̃kτ
q−k−1tk]dτ, (20)

(Qx)(t) =
(−1)q

2πi(q − 1)!

∫

Γ

v(τ)τ−q[(τ − t)q−1×

× ln
(

1− τ

t

)
+

q−2∑

k=0

β̃kτ
q−k−1tk]dτ,

(α̃k, k = 1, q − 1 and β̃k, k = 0, q − 2 are real num-
bers) and vice versa for each solutionx(t) of problem
(10)- (9) there is a solutionv(t)

v(t) =
dq(Px)(t)

dtq
+ tq

dq(Qx)(t)
dtq

,

to the SIE (18).
Furthermore for given set of linear- indepen-

dent solutions of (18), there are corresponding set of
linear- independent solutions of the problem (10)- (9)
and vise versa. In formulae (20)ln(1 − t/τ) and
ln(1 − τ/t)( for given τ ) there are the branches that
vanish at the pointst = 0 andt = ∞, respectively.

5 Proof of theorem 2

Using the conditions (12)

Rn(tj) = 0, j = 0, 2n (21)

we obtain that the (15) is equivalent to the operator
equation

UnMUnxn = Unf, (22)

where M is an operator defined in (10). We will
show that ifn ≥ n1 is large enough, then the oper-
atorUnMUn is reversible. The operator acts from the
subspace

o
Xn=



tq

n∑

k=0

ξkt
k +

−1∑

k=−n

ξkt
k





(the norm is defined as inH(q)(ω2)) to the space

Xn =
n∑

k=−n
rkt

k, (the norm is defined as inH(ω2)).

In similar way, by using the formulae (17) we rep-

resent the functions
dq(Pxn)(t)

dtq
and

dq(Qxn)(t)
dtq

by

Cauchy type integrals with the same densityvn(t) :

dq(Pxn)(t)
dtq

=
1

2πi

∫

Γ

vn(t)
τ − t

dτ, t ∈ F+ (23)

dq(Qxn)(t)
dtq

=
t−q

2πi

∫

Γ

vn(t)
τ − t

dτ, t ∈ F−

By Υn we denote the polynomial class of the form

n∑

k=−n

γkt
k, t ∈ Γ

whereγk are arbitrary complex numbers.
Using formulae (13) and relations (14) we obtain

from (23)

vn(t) =
n∑

k=0

(k + q)!
k!

tkξk+

+(−1)q
n∑

k=1

(k + q − 1)!
(k − 1)!

t−kξ−k

and sovn(t) ∈ Υn.
Using (23), Eq. (22) as well as problem (10)-

(9) can be reduced to an equivalent equation (in same
sense of solvability)

UnΘUnvn = Unf, (24)

treated as an equation in the subspaceXn. Obviously,
the eq. (24) is the equation of collocation methods for
SIE (18). For SIE the collocation method was con-
sidered in [2] where sufficient conditions for the solv-
ability and convergence of this method were obtained.

From (23) andvn(t) ∈ Υn we conclude that if
vn(t) is the solution of equation (24), thenyn(t) is the
discrete solution of the systemUnMUnxn = Unf and
vise versa. We can determinedyn(t) from relations
(20):

(Pyn)(t) =
(−1)q

2πi(q − 1)!

∫

Γ

vn(τ)[(τ−t)q−1 ln(1− t

τ
)+

+
q−1∑

k=1

α̃kτ
q−k−1tk]dτ, (25)
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(Qyn)(t) =
(−1)q

2πi(q − 1)!

∫

Γ

vn(τ)[(τ−t)q−1 ln(1−τ

t
)+

+
q−2∑

k=0

β̃kτ
q−k−1tk]dτ,

As was mentioned above, the functionyn(t) is deter-
mined throughvn(t) from (25) uniquely.

It follows if the equation (24) has a unique solu-
tion vn(t) in subspaceXn, then the following relation

yn(t) = xn(t) (26)

is true.
We will show that for Eq. (24) all conditions of

theorem 3[2] are satisfied.
From condition 1 of theorem 2 and from (19) we

obtain the condition 1 of theorem 3[2]. From the
equality

[C(t)−D(t)]−1[C(t) + D(t)] = tqB−1
q (t)Aq(t),

we conclude that indexes of functions of[C(t) −
D(t)]−1[C(t) + D(t)] has to be zero which coincides
with condition 2 of theorem 3[2]. Note other condi-
tions of theorem 2 coincide with conditions of theo-
rem 3[2].

Becauseh(t, τ) ∈ H(ω1) then the exact solution
v(t) ∈ H(ω1).

Assumptions 1)-6) in theorem 2 provide the va-
lidity of all assumptions of theorem 3 in [2]; therefore
the Eq.(24) withn ≥ n1 is uniquely solvable. The ap-
proximate solutionsvn(t) of (24) converge to the ex-
act solutionv(t) of SIE (18) in the norm of the space
H(ω2) asn → ∞. Hence the operator equation (22)
and the SLAE (15) has unique solution forn ≥ n1.
From theorem 3[2] the following relation holds:

||v − vn||ω2 = O

(
Φ

(
1
n

)
ln n

)
(27)

From (20), (25) and (26) we obtain

||x− xn||ω2,q ≤ c||v − vn||ω2

From last relation and from (27) we have (16).
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