
1 Introduction
Natural communication with a human is required
for various types of human-friendly robots such as
humanoid robots, personal robots, pet robots, and
entertainment robots [1-9]. The main methods for
natural communication are natural languages and
gestures. The theory of relevance emphasizes the
importance of mutual cognitive environments for
communication [10]. This indicates the high level
of perceptual capability is required for natural
communication. One of important roles in
perception is to specify or extract an object from
its background. This is deeply related with the
figure-ground problem [12]. According to the
theory of relevance, an object can be specified by
natural language and gestures. And also, Zadeh
discusses the relationship between perception and
natural language in his work on computing with
words [11]. The meaning of an object depends on
the environment as a background and the physical
embodiment treating the object, i.e., how to use it
considered as possible actions. Therefore, we must
take into account all of natural language, gestures,
perception, and action to realize natural

communication. In this paper, we focus on the
gesture imitation as a basic level of human-friendly
communication, and propose a total mechanism of
behavior acquisition and behavior accumulation
through the interaction with human from the
viewpoint of constructivism.

Imitation is a powerful tool for gestural
interaction between children [6] and for teaching
behaviors to children by parents. Imitation is
defined as the ability to recognize and reproduce
others' action, and imitation has been also discussed
in the research of social learning theory. In general,
the social learning is classified into two levels:
observational learning and imitative learning [12].
The concept of imitative learning has been applied
to robotics [1-6]. Basically, in the traditional
researches of learning by observation, a motion
trajectory of a human arm assembling or handling
objects is measured, and the obtained data are
analyzed and transformed for the motion control of
a robotic manipulator. Furthermore, various
biologically-inspired neural systems have been
applied to imitative learning for robots [1-3].
Especially, the discovery of mirror neurons is very

Visual Perception and Reproduction for Imitative Learning of
A Par tner Robot

NAOYUKI KUBOTA

Dept. of System Design

Tokyo Metropolitan University

1-1 Minami-Osawa, Hachioji, Tokyo 192-0397

Japan

SORST, Japan Science and Technology Agency

                         http://www.eng.metro-u.ac.jp/prec/SEKKEI/eng/index.html

Abstract: - This paper proposes visual perception and model reproduction based on imitation of a
partner robot interacting with a human. First of all, we discuss the role of imitation, and propose the
method for imitative behavior generation. After the robot searches for a human by using a CCD camera,
human hand positions are extracted from a series of images taken from the CCD camera. Next, the
position sequence of the extracted human hand is used as inputs to a fuzzy spiking neural network to
recognize the position sequence as a motion pattern. The trajectory for the robot behavior is generated
and updated by a steady-state genetic algorithm based on the human motions pattern. Furthermore, a
self-organizing map is used for clustering human hand motion patterns. Finally, we show experimental
results of imitative behavior generation through interaction with a human.

Key-words: - Visual Perception, Partner Robots, Spiking Neural Network, Genetic Algorithm

Proceedings of the 5th WSEAS International Conference on Signal Processing, Istanbul, Turkey, May 27-29, 2006 (pp76-81)

mailto:kubota@comp.metro-u.ac.jp
http://www.eng.metro-u.ac.jp/prec/SEKKEI/eng/index.html


important [1]. Each mirror neuron activates not
only in performing a task, but also in observing
that somebody performs the same task. In this
way, imitation has been applied for learning
robotic behaviors. Rao and Meltzoff classified
imitative abilities into four stage progression: (i)
body babbling, (ii) imitation of body movements,
(iii) imitation of actions on objects, and (iv)
imitation based on inferring intentions of others
[6]. The third stage of imitation was realized in the
previous research. If the robot can perform the
fourth stage of imitation, the robot might develop
in the same way as humans. Actually, we should
discuss how to reproduce the behaviors acquired by
the robot, before discussing the fourth stage of
imitation. Therefore, we focus on behavior
coordination based on imitation. For this, the
robot should have three modes of human search,
interaction with human, and imitative learning
motions at least. First of all, the robot detects a
human, and extracts his or her hand motion by
image processing. Next, the hand motion is
recognized as a gesture by using a spiking neural
network [13] and a self-organizing map [14].
Furthermore, a steady-state genetic algorithm
(SSGA) [15] is used for generating a trajectory
similar to the motion of the human hand. Finally,
the acquired motion patterns are incorporated into
the behavior coordination of the robot according
to the sensory inputs. We discuss the interactive
learning between a human and a partner robot
based on the proposed method through experiment
results.

This paper is organized as follows. Section
2 explains the imitative behavior generation and
the behavior coordination of a partner robot.
Section 3 shows several experiment results of the
partner robot based on the imitative learning.

2 Imitation and Behavior
Coordination
2.1 A Par tner Robot and Visual Perception
We developed a human-like partner robot Hubot
[9] in order to realize the natural communication
with a human (Fig.1). This robot is composed of a
mobile base, a body, two arms with grippers, and s
head with pan-tilt structure. The robot has various
sensors such as two CCD cameras, four line sensors
(infrared sensors), microphone, ultrasonic sensors,
touch sensors in order to perceive its environment
and internal states. Each CCD camera can capture

an image with the range of -30° and 30° in front of

the robot. Furthermore, many encoders are equipped
with the robot. Two CPUs are used for sensing,
motion controlling, and communicating. Therefore,
the robot can take various behaviors like a human.
In previous researches, we proposed a human
detection method using a series of images from the
CCD camera and an interactive trajectory planning
method for a hand-to-hand behavior [8,9].

The robot takes an image from the CCD
camera, and extracts a human (Fig.2). In this paper,
a long-term memory based on differential
extraction is used to detect a human considered as a
moving object. Figure 3 shows an example of the
visual tracking based on the human extraction. If
the robot detects a human, the robot extracts the
motion of the human hand. The sequence of the
human hand is the inputs to the robot. The detailed
procedure is explained in the following. A human
wears a blue glove for performing a gesture displayed
to the robot in order to simplify the problem. After
the taken image is transformed into the HSV color
space, color corresponding to the blue glove is
extracted by using thresholds. Next, the blue glove is
detected by using template matching based on a
steady-state genetic algorithm (SSGA). The SSGA
simulates the continuous model of the generation,
which eliminates and generates a few individuals in a
generation (iteration) [15]. The sequence of the
hand position is represented by G(t)=(Gx(t), Gy(t))

where t=1, 2, ... , T; the maximal number of images
is T.

2.2 A Fuzzy Spiking Neural Network for
Human Motion Extraction
We apply a fuzzy spiking neural network (FSNN)
for memorizing several motion patterns of a human
hand, because the human hand motion has specific
dynamics. A SNN [13] is often called a pulsed neural
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Fig.1: A human-like partner robot; Hubot
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network and is considered as one of the artificial
NNs imitating the dynamics introduced the ignition
phenomenon of a cell with the propagation
mechanism of the pulse between cells. In this
paper, we use a modified simple spike response
model to reduce the computational cost. First of
all, the action potential hi(t) used as an internal

state is calculated as follows;

€ 

hi( t) = tanhhi
syn( t) + hi

ext(t) + hi
ref (t)( )

(1)
Here hi

syn(t) including the output pulses from other

neurons and hi
ext(t) is the input to the ith neuron

from the external environment. Furthermore,
hi

ref(t) is used for representing the refractoriness of

the neuron. When the internal state of the ith
neuron is larger than the predefined threshold, a
spike or an impulse is outputted as follows;

€ 

pi ( t) =
1 if hi

ref ( t) ≥ qi

0 otherwise

 
 
 (2)

where qi is a threshold predefined for firing. Here

spiking neurons are arranged on a planar grid
(Fig.4) and the number of the neuron (N) is set at
25. By using the values of a human hand position,
the input to the ith neuron is calculated by the
Gaussian membership function as follows;

€ 

hi
ext( t) = exp −

ci − G(t)
2

σ 2

 

 
 

 

 
 

(3)
where ci=(cx,i, cy,i) is the position of the ith neuron

on the image; σ is a standard deviation. The

sequence of spike outputs pi(t) is obtained by using

the human hand positions G(t). The weight
parameters between spiking neurons are trained by
the Hebbian learning algorithm based on the
temporally sequential spikes as follows,

€ 

wj ,i ← tanhγ wgt ⋅ w j ,i + ξwgt ⋅ pi (t) ⋅ p j (t −1)( )
(4)

where γwht is a discount rate and ξwgt is a learning

rate. Because the adjacent neurons along the
trajectory of the human hand position are easily
fired by the Hebbian learning, the FSNN can
memorize the temporal spike patterns based on
various gestures. Next, the sequence of the fired
spiking neurons are as an input for clustering by a
self-organizing map (SOM) based on the
competitive learning in order to memorize and
detect a spatial pattern of a human gesture.

2

.3 Imitative Behavior Generation
The essential of an imitative learning in this
method is to acquire a behavior according to a
human physical motion. After behavior acquisition,
a behavior similar to the human motion can be used
as a communication signal, i.e., a gesture. The robot
can acquire a behavior by incorporating some action
segment from the human gesture. A trajectory
planning problem for a behavior can result in a path
planning problem from an initial configuration to a
final configuration corresponding to the motion of
the detected human hand. Here a configuration θ is

expressed by a set of joint angles, because all joints
are revolute,

€ 

θ = (θ1,θ2,⋅ ⋅ ⋅,θn)T ∈Rn
(5)

where n denotes the DOF of a robot arm. The
number of DOF of the partner robot shown in Fig.1

Fig.2: A visual system of the robot in imitation
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is 4 (n = 4). In addition, the position of the end-
effector (robot hand or gripper), P=(px py pz)

T on

the base frame. Because a trajectory can be
represented by a series of m intermediate
configurations, the trajectory planning problem is
to generate a trajectory combining several
intermediate configurations corresponding to G(t).
SSGA is applied to generate a trajectory for an
imitative behavior corresponding to a human hand
motion. Here the SSGA for detecting a human hand
is called SSGA-1, while the SSGA for generating a
trajectory is called SSGA-2.

Figure 5 shows a total architecture of
generating a trajectory for a robot behavior. First
of all, the robot detects the human hand position
by SSGA-1, and then, SOM selects a node according
to the human hand motion as inputs, and its
corresponding trajectory is selected by referring to
the knowledge database stored. The trajectory is
used for generating initial trajectory candidates
(θINIT) as an initial population of SSGA-2. Next,

SSGA-2 outputs the best trajectory, and the robot
displays it to the human.

A trajectory candidate is composed of all
joint variables of intermediate configurations
(Fig.6). Initialization generates an initial
population based on the previous best trajectory
stored in the knowledge database linked with SOM.
The jth joint angle of the kth intermediate
configuration in the ith trajectory candidate θi,j,k,

which is represented as a real number, is generated
as follows (i=1, 2, ... , g),

€ 

θi, j,k ← θ j ,k
INIT + β j

I ⋅ N 0,1( ) (6)

where θINIT
j,k is the previous best trajectory

referred from the knowledge base; βj
I is a

coefficient for the jth joint angle. A fitness value is
assigned to each trajectory candidate. The
objective is to generate a trajectory realizing the
possibly short distance from the initial
configuration to the final configuration while
realizing good evaluation. To achieve the
objectives, we use a following fitness function,

€ 

f i = f p +ηT fd (7)

where ηT is a weight coefficient. The first term, fp,

denotes the distance between the hand position and
the target point. The second term, fd, denotes the

sum of squares of the difference between each joint
angle between two configurations of t and t-1.
Therefore, this trajectory planning problem can

result in a minimization problem. A selection
removes the worst individual from the current
population. Next, an elite crossover is performed.
The elite crossover generates an individual by
incorporating several genes from the best individual
in the population. Consequently, the worst
individual is replaced with the individual generated
by the elite crossover. Furthermore, we use the
adaptive mutation based on the fitness vault. The
searching processes using the internal simulator are
repeated until the termination condition is satisfied.
Here we use the maximal times of internal
evaluations as the termination condition.

The robot can simply extend the acquired
motions into duplication in a same phase,
duplication in a different phase, and combination of
different motions to realize the motion using both
arms. These motion reproduction is performs in the
mode of interaction with human.

Fig.6: The representation of the ith trajectory candidate
composed of m intermediate configurations

θ INIT

θ *

FSNN

SOM

SSGA-2

SSGA-1

G(t)

pi(t)

Images

Fig.5: Total architecture of the imitative learning
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3 Exper iments
This section shows experimental results of the
partner robot Hubot. First, we show the imitative
learning. The size (X,Y) of an image is (160, 120).
Here a trial is defined as one cycle from human
hand detection by SSGA (SSGA-1), spatial and
temporal pattern learning of human hand motion
by FSNN, gesture clustering by SOM, and behavior
generation by SSGA (SSGA-2). The number of
spiking neurons (N) is 25, and the number of nodes
in SOM is 10. The population sizes of SSGA-1and
SSGA-2 are 120 and 200, respectively. The number
of evaluations in SSGA-1 and SSGA-2 are 300 and
5000, respectively. Furthermore, local hill-
climbing search is used in SSGA-2.

Figure 7 shows an example of imitative
learning and Fig.8 shows the history of the node
selected in SOM in the learning. The person tries
to display various motions in order to know the
reactive motion patterns of the robot. Therefore,
several nodes are selected at first, but gradually,
similar nodes are selected repeatedly. Finally, the
aim of the human trial is to teach a circular hand
motion. The person moved his right hand like a
circle (Fig.7 (1)-(4)), and then, the robot moved
the right hand in the same way as the person did
(Fig.7 (5)-(8)). In this way, the robot memorizes
various human hand motion patterns.

Figures 9 and 10 shows more complicated
gestures and their corresponding motion patterns
generated by SSGA-2. The circle indicates the
detected hand positions corresponding to motion
patterns. The robot extracts human motion
patterns and reproduces them in the internal
representation of the robotic configuration space.
Figures 11 shows the history of the best fitness
value of SSGA-2 in the imitation shown in Fig.9.

4 Summary
This paper proposed imitative learning for a partner
robot. We must realize the high level of signal
processing and system integration in order to deal
with human factors. We applied a fuzzy spiking
neural network for extracting spatial and temporal
patterns of human gestures, a self-organizing map
for clustering gestures, and a steady-state genetic
algorithm for generating a trajectory to perform a
behavior similar to the human motion pattern.
Experimental results show that the robot acquires
various motion patterns by imitating human hand
motions. However, the voice recognition is required
for natural communication.

In our other research, we integrated voice
recognition and gesture recognition for mobile
partner robots [16], and furthermore, we used
multilayer perceptron as behavior learning.
Therefore as a future work, we intend to
incorporate the behavior learning method instead of
knowledge database used in SOM.
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Fig.8: The change of the node selected in the SOM
according to human hand motion patterns.

Fig.7: The experimental result of imitative learning
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