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Abstract: Event-Related Potentials (ERPs) provide non invasive measurements of the electrical activity on the 

scalp that are linked to the presentation of stimuli and events. Brain mapping techniques are able to provide 

evidence on the solution of debatable issues in cognitive science. In this paper, an effective signal 

classification approach is proposed, extending the use of two inversion techniques: the Brain Electrical 

Tomography using Algebraic Reconstruction Technique (BET-ART) and the Low Resolution Brain 

Electromagnetic Tomography (LORETA). The first step of the methodology applied is the feature extraction, 

which is based on the combination of the Multivariate Autoregressive model with the Simulated Annealing 

technique, in order to extract optimum features, in terms of classification rate. The classification, as the second 

step of the methodology, is implemented by means of an Artificial Neural Network (ANN) trained with the 

back-propagation algorithm under the “leave-one-out cross-validation” scenario. The ANN is a multi-layer 

perceptron, the architecture of which is selected after a detailed search. The proposed methodology has been 

applied for the classification of First Episode Schizophrenic (FES) patients and normal controls using the 

intracranial activity distributions obtained by ERPs. A comparative analysis was performed using BET-ART 

and LORETA inversion methods. Implementation of the proposed methodology provided classification rates 

of up to 93.1%, for both types of input signals. Additionally, for both BET-ART and LORETA signals, the 

brain regions that differentiate FES patients from normal controls are located in the frontal brain area, in 

accordance to the related literature. The proposed methodology may be used for the design of more robust 

classifiers based on intracranial source distributions, which are more closely related to the underlying 

cognitive mechanisms responsible for the generation of the scalp-recorded biosignals.  

 

Key-Words: Multivariate Autoregressive Model (MVAR), Neural Networks, Simulated Annealing (SA), 

Classification, “Leave-one-out” cross-validation, Brain Electrical Tomography using Algebraic 

Reconstruction Technique (BET-ART), Low Resolution Brain Electromagnetic Tomography (LORETA)  

 

1 Introduction 
Event-related potentials (ERPs) provide 

measurements of electrical activity on the scalp that 

are linked to the presentation of stimuli or events 

[1]. The study of ERPs is focused on parts of the 

waveform containing significant local maxima and 

minima, called peaks or components. The use of 

ERPs as diagnostic tools in psychiatry has been 

enhanced by classification systems integrated in 

properly designed decision-support systems (DSS). 

The use of scalp-recorded ERPs has been studied in 

the literature towards the development of 

classification systems [2-5]. Anderson et al. [6] 

explored the use of scalar and multivariate 

autoregression models to extract EEG features, in 

order to discriminate different mental tasks. These 

features were then classified with neural network 

classifier. 

The inversion of cognitive ERPs to intracranial 

current sources provides a method to observe brain 

phenomena related to information processing 

mechanisms. Various methods are currently used, 

mainly computing discrete brain dipoles or dipolar 

layers, which generate potentials, on the surface of a 
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model of the intervening volume conductor that best 

fit the measured ERPs [7-10]. 

In contrast to the use of features extracted from 

scalp-recorded EEG or ERPs, for the development 

of classification systems, relatively fewer studies 

explore the use of features from intracranial 

quantities. Musha et al. [12] classified normal 

controls from very mild and moderately severe 

Alzheimer’s Disease (AD) patients by means of an 

alpha-band resting EEG inversion, using a single 

shell spherical head model, to a single dipole. The 

goodness-of-fit of the potentials produced by the 

computed intracranial dipole compared to the 

measured potentials, defined as the alpha bipolarity, 

has provided the basis for discriminating among the 

three subjects’ categories. A method, which has 

been more widely used for investigating differences 

in various classes of subjects, and more specifically 

in classification, is the Fast Fourier Transform (FFT) 

dipole approximation [13-14]. According to this 

method, starting from multichannel scalp EEG 

recordings, the brain electrical field data are 

modeled by a potential distribution map, using the 

first principal component in the frequency domain. 

The potential distribution is then used for single 

dipole source localization. Discriminant analysis is 

based on the strength and the position coordinates of 

the dipole, for various frequency bands. The method 

has been used for the discrimination of AD patients 

and subjects presenting mild cognitive impairment 

(MCI) [15]. The best overall correct classification of 

AD versus control subjects and MCI subjects was 

84% and 78%, respectively, while conventional FFT 

provided similar results.  

In this paper, a methodology for the classification of 

psychiatric disorders, based on intracranial electrical 

distributions, is presented. The methodology 

consists of a feature extraction module and an 

Artificial Neural Network (ANN) classifier. The 

feature extraction module comprises the use of a 

novel method combining the Multivariate 

Autoregressive (MVAR) model with the Simulated 

Annealing (SA) technique, as a global optimization 

technique, in order to detect the optimum 

combinations of the current sources (number and 

kind), the time interval to use, as well as the order of 

the model, leading to the classification rate achieved 

by the neural network classifier. The potential of the 

Brain Electrical Tomography using Algebraic 

Reconstruction Technique (BET-ART) and the Low 

Resolution Brain Electromagnetic Tomography 

(LORETA) inversion methods is comparatively 

investigated for the classification of First Episode 

Schizophrenic (FES) patients against normal 

controls. The results of this investigation are 

exploited in order to design a DSS with optimized 

classification performance, for the case of FES 

patients, and also in order to investigate brain areas 

that are crucial for FES patients.  

 

2 System Design  
2.1 The Proposed Classification System 
The proposed classification system consists of two 

modules: the feature extraction module and the 

classification module, as shown in Fig. 1.  

Fig. 1:  Block diagram of the proposed system for the 

classification of intracranial current source waveforms into two 

classes: patients and normal controls. 
 

The inputs to the first module are current source 

waveforms, as computed from each inversion 

process. The appropriate features are extracted and 

processed by the feature extraction module, and then 

fed to the classification module. The output of the  

system encodes two classes: patients or control 

subjects. 

 

2.2 Feature Extraction Module  
In the present work, the MVAR model is used for 

feature extraction. When using the MVAR model in 

ERPs classification problems, for the construction of 

the feature vector, a number of parameters have to 

be selected, regarding the number and the kind of 

signals (i.e. intracranial sources) whose waveforms 

will be modeled, the time interval of the waveforms 

to be modeled and the order of the model to be used. 

An exhaustive search for the selection of the 

parameters, that achieve the best classification rate, 

seems practically very difficult, as it creates a very 

large space for all parameter combinations. A 

further disadvantage of the MVAR model is the 

dependence of the model coefficients on the used 

input signals; thus, any modification of the input 

signals requires recalculation of the MVAR 

coefficients. When the classification is based on 

intracranial current source waveforms, the same 

problems exist concerning the selection of the 

number and kind of the source positions, the time 

interval of the waveforms to be modeled and the 

order of the model to be used. 

For these reasons, a new method for the extraction 

of MVAR coefficients from computed intracranial 

current source waveforms is proposed in the present 

work. The method combines the MVAR model with 

a global optimization method, the SA technique 

 

intracranial  
signals 

Feature 

Extraction   
Classifier   

Class 1: Patient 
  

Class 2: Control 
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[16], in order to detect optimum combinations of 

sources (number and kind), time interval and model 

order, leading to the best classification performance 

of a neural network classifier. 

The implementation of the MVAR model to current 

source signals is based on the principle that the 

signals are described by a linear filter fed with noise. 

According to this model, each value of the signal 

can be estimated using the values of the preceding p 

samples, as follows [17-18]: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2           k p,...,Nx k x k x k p x k p e k=− − − − +⋅⋅⋅− − + =Α Α Α  (1) 

 

where N is the maximum number of samples 

available. The procedure works for samples with the 

index (p, p+1, ...), i.e. starting after the p minimum 

number of initialization inputs. In Eq. (1), ( )x k  is a 

d−dimensional vector of data at sample with index k 

and e(k) is a d−dimensional vector of random input 

(noise). Furthermore A(i), i=1,…,p are the d×d 

matrices of the AR coefficients to be estimated from 

x(k), k=1,…,N and p is the model order. These 

coefficients construct the feature vector of each 

subject.  

According to the proposed feature extraction 

methodology, an optimum combination of current 

sources, in terms of number and kind, is obtained by 

implementing the MVAR model in conjunction with 

the SA technique, which provides the advantage of 

finding possible global minimum (or maximum) in 

contrast with other local optimization methods, 

which require a good initial guess and are often 

trapped to local minima (or maxima) [19-20]. This 

optimum selection is tested for different model 

orders, within a pre-defined interval, based on the 

performance of the Fuzzy C-Means classifier (FCM) 

[21].  

More specifically, in feature extraction from 

intacranial source data, an initial random selection 

of inputs (in terms of kind and number) is 

considered. For this selection, the MVAR 

coefficients are extracted, constructing the feature 

vector for each subject. These coefficients are fed to 

a classifier, based on the FCM algorithm, and the 

classification rate is then calculated. After several 

temperatures, as defined by the SA schedule, an 

optimum combination of sources is extracted 

corresponding to the best classification rate 

achieved. The proposed feature extraction 

methodology is presented in the form of pseudocode 

in the following: 

Step 1:  Define the model order p. 

Step 2:  Search for the optimum combination of 

inputs using the SA technique 

Step 2.1: Define the kind and number of inputs  

Set initial Temperature 

Random selection of initial combination of inputs 

For i=1 to a number of temperatures do 

Begin 

For j=1 to maximum number of combinations 

per temperature 

Begin  

Step 2.2:  Selection of next 

combination of inputs based on the current 

combination of inputs and the current 

temperature 

Step 2.3:  Calculation of MVAR 

Coefficients 

Step 2.4:  Calculation of classification 

rate, using the FCM algorithm  

Step 2.5:  Acceptance of the current 

combination based on the Boltzmann 

distribution 

End 

Reduction of Temperature 

End 

 

It must be pointed out that the FCM algorithm was 

selected in Step 2.4, as an objective function of the 

SA technique, since it requires minimum parameter 

trimming compared to neural networks. 

The selection of the next combination of input 

signals depends on the current one and the current 

temperature. The higher the temperature, the smaller 

the number of inputs that participate in each change. 

Given a combination of inputs, for the choice of the 

next combination, one of the following changes 

were taken place: a)insertion of inputs, b)abstraction 

of inputs, c)alteration of inputs, d)insertion and 

alteration of inputs, and e)abstraction and alteration 

of inputs. In cases of insertion or alteration of 

inputs, the lower the temperature, the smaller the 

distance between the new input and the current 

combination of inputs. 

According to the aforementioned MVAR model, a 

feature vector is constructed with a dimensionality 

of p×d×d, where p is the model order and d is the 

number source signals. 

 

2.3 Classification Module: selection of neural 

network structure  
The classification module contains a multi-layer 

perceptron ANN trained with the back-propagation 

algorithm. The selection of the topology of the ANN 

is a methodological aspect that was investigated in 

the present work. Various methodologies for the 

selection of the number and the size of hidden layers 

in ANNs have been used, including evolutionary 
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strategies and genetic algorithms [22-23], network 

pruning techniques [24], network growing 

techniques [25], as well as extensive network 

architecture search [26][1]. 

In the present work, we opted for an extensive 

network architecture search strategy, scanning 

combinations of network structure parameters, in 

order to compare the performance of 3-layered and 

4-layered networks with one or two output neurons. 

Specificity was computed as the percent ratio of the 

correctly classified controls to the total number of 

controls. Sensitivity was computed as the percent 

ratio of the correctly classified patients to the total 

number of patients. Negative predictive value was 

computed as the percent ratio of correctly classified 

controls to the total number of subjects classified as 

controls and positive predictive value the percent 

ratio of correctly classified patients to the total 

number of subjects classified as patients. The overall 

classification rate (stated simply, in the following, as 

classification rate - CR) was computed as the 

percent ratio of correctly classified subjects to the 

total number of subjects used in the study. After a 

preliminary investigation, concerning sources as 

input signals, it was found that satisfactory results, 

i.e. an overall classification rate of greater than 90%, 

without either sensitivity or specificity being less 

than 85%, were achieved using four or three source 

combinations, with an order of 4. Therefore, we 

chose to search for the optimum number of hidden 

layer neurons using a combination of four sources 

and an order of 4, leading to a feature vector of 64 

(see end of Section 2.2 - Feature Extraction 

Module). Initially 3-layer neural networks with one 

and two output neurons and hidden layer neurons 

ranging from 4 to 40 (with steps of 4) were tested 

and afterwards 4-layer neural networks with the first 

hidden layer neurons ranging from 4 to 40 (with 

steps of 4). For each number of neurons in the first 

hidden layer, the neurons in the second hidden layer 

varied from 4 to 40 (with steps of 4).  

The results of the tests suggested broadly similar 

performance for 3-layered and 4-layered networks 

with one or two output neurons. Furthermore, given 

that the input layer consisted of 64 neurons, the 

performance of the network was not significantly 

influenced by the number of neurons in the first 

hidden layer (which, of course, is the sole hidden 

layer in 3-layered ANNs), as long as that number 

was between 12 and 28 (approximately equal or 

more than 1/5 and equal or less than 2/5 of the 

number of input neurons). Reducing the neurons in 

the first layer to less than 12, led to a gradual 

reduction of the performance. It should be stressed 

that the selection of the number of first hidden layer 

neurons is purely empirical and it was obtained 

experimentally using the set of data presented in the 

present study. Based on the above empirical test 

results, and taking into account that minimizing the 

size and number of the hidden layers, while 

maintaining acceptable performance as the major 

goal of the search strategy, the networks 

implemented in the present study were 3-layered, 

with the ratio of neurons at the input and hidden 

layer around 5 and 1 neuron in the output layer.  

As a result of the above network structure selection 

investigation, the classification module is 

implemented with an ANN consisting of three layers 

(see Fig. 2).  
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Fig. 2:  Architecture of the neural network classifier. 

 

The input layer consists of a number of neurons 

equal to the number of the selected features. The 

hidden layer contains a number of neurons equal to 

one fifth of the input neurons. The output layer 

consists of one neuron, encoding the two classes of 

the subjects: patient and normal (0=patient and 

1=normal).   
 

3 Measurement and computational 

methods  
3.1 Subjects   
Fourteen (14) never medicated FES patients (8 men 

and 6 women) with mean age 29 (±7) years were 

matched for age and sex to 30 healthy controls (20 

men and 10 women) with mean age 31 (±3) years. 

The mean educational level was 11 (±3) and 12 (±3) 

years of schooling, for the patients and controls, 

respectively. 

All patients met DSM-IV criteria (American 

Psychiatric Association, 1994) for schizophrenic 

disorder, paranoid type. The diagnosis was verified 

independently by two psychiatrists. Age at onset 

was defined as the earliest age at which medical 

advice was sought for psychiatric reasons or at 

which subjective distress or impairment of 

functioning was observed [27]. The controls were 

recruited from hospital staff and local volunteer 

groups. They were free of psychiatric and physical 
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illness. All participants had no history of any 

neurological or hearing problems. All participants 

were right-handed as assessed by the Edinburg 

Inventory. Written informed consent was obtained 

from both patients and controls.  

 

3.2 Stimuli and ERP recording procedure    
Patients and controls were evaluated by a 

computerized version of the digit span Wechsler test 

[28-29]. The subjects sat in an anatomical chair 

placed inside an electromagnetically shielded room. 

A single sound of either high (3,000 Hz) or low 

frequency (500 Hz) was presented to the subjects, 

who were asked to memorize the numbers that 

followed. The warning stimulus lasted 100 msec. A 

1-sec interval followed and then the numbers to be 

memorized were presented. Two to nine one-digit 

numbers were presented in each trial. The time 

interval between administered numbers was one 

second. At the end of the number sequence 

presentation, the signal tone was repeated and 

subjects were asked to recall the administered 

numbers as quickly as possible. The numbers were 

recalled by the subject in the same (low frequency 

tone) or in the opposite order (high frequency tone) 

than that presented to him/her. Each test session 

involved 26 repetitions of the trial, 13 repetitions 

with low frequency tone and 13 with high frequency 

tone. The sequence of the warning stimuli was 

pseudorandom. Warning stimuli and numbers were 

delivered using earphones at 65 dB. ERPs were 

recorded during the 1-sec interval between the 

warning stimulus and the first administered number, 

for each of the 26 test repetitions. 

Referential ERP recordings were performed using 

Ag/AgCl electrodes (resistance < 5 kΩ) at positions 

Fp1, Fp2, F3, F4, C3, C4, C3-T5/2, C4-T6/2, P3, 

P4, O1, O2, Pz, Cz and Fz according to the 10-20 

International system of Electroencephalography 

[30]. Data was digitized at a sampling rate of 500 Hz 

and band-pass filtered from 0.05 to 35 Hz. During 

the administration of the stimuli, the subjects had 

their eyes closed in order to minimize eye 

movements and blinks. Recordings were averaged 

for each electrode, by a computerized system, as a 

pre-processing denoising step of the procedure.  

The study was concentrated on the time interval 

from 500 to 800 msec, corresponding to the P600 

ERP component. The focus on this component was 

based on its importance in reflecting information 

processing in the brain [31]. Furthermore, the P600 

component is accepted as reflecting the completion 

of any synchronized operations, concerning a 

decision taken after the presentation of a warning 

stimulus and target detection. Specifically, its 

amplitude is considered as an index of the cost of 

processing, while its latency is considered as a 

function of the onset and the duration of processes 

[32]. 

 

3.3 Intracranial Distributions Computation     
The computation of intracranial distributions was 

carried out using both the BET-ART and the 

LORETA inversion methods. 

A) BET-ART   

According to this method, in order to solve the 

inverse problem, a three-layered spherical human 

head model was considered simulating brain, skull 

and scalp media, with corresponding radii r1, r2, r3 

and conductances σ1, σ2, σ3 [33]. The brain region 

supposed active was divided into n small volumes 

∆υk, called voxels, centered at points rk=(rk,θk,φk), 

(rk<r1), carrying an unknown current source density 

ρk, k=1,...,n (Amperes/m
3
). Scalp potentials Vi were 

measured at m=15 points ri=(r3,θi,φi), i=1,...,m, 

corresponding to the ERP electrodes used in the 

present study. The inversion problem was 

formulated in matrix form as follows: 

 

A.X = Y (2) 

 

where Y=[yi], yi=Vi, i=1,...,m, X=[xk], xk=ρk∆υk, 

k=1,...,n, A=[aik] , aik=G3(ri,rk) and G3 is the 

Green’s function connecting the unknown source 

position at rk with the observation point ri. The 

current quantities xk correspond to point current 

activities located at the center of each voxel, 

representing the whole voxel activity.  

The solution of Eq. (2) was provided by the 

Algebraic Reconstruction Technique-1 (ART-1) 

algorithm [34], which is an iterative procedure 

seeking the minimum norm solution of the inverse 

problem. The algorithm can be stated as follows: 

Initial Values (Iterative step q=0): Start with an 

assumed distribution X=X
0
, where X

0
 is an arbitrary 

element of the set of all the linear combinations of 

ai
T
's. 

Typical iterative step (q≥1): Apply the recursive 

formula: 

 

X
(q+1) 

= X
(q)

 + r
(q)

a
i

T

(y
i
-<a

i
,X

(q)

>)/||a
i
||

2

 (3) 

 

where ai=(ai1,...,ain) is the i-th line of matrix A, ai
T
 is 

the transpose of ai, <ai,X(q)> is the inner product of 

vectors ai and X
(q)

, ||ai||
2
=<ai,ai

T
> and r

(q)
 are 

relaxation parameters. In Eq. (3), it is i = (q mod m) 

+ 1, so that the lines of A, and the elements of Y 

were used cyclically, and therefore X was examined 

after each full cycle, i.e. m=15 iterations. The 
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iterations were stopped when the parameter 

D(L)=||X
(L+1)m

-X
Lm

||/||X
Lm

||, expressing the rate of 

change between successive reconstructions (where L 

is the number of cyclic iterations executed), reached 

a low threshold of 0.001. 

In order to implement the inversion procedure, the 

geometrical (r1, r2, r3) and electrical (σ1, σ2, σ3) 

model parameters as well as the coordinates of the 

external electrode positions and the current source 

positions under investigation were selected. The 

digitized and averaged ERP data, for each subject, 

were regrouped to represent the spatial sample of the 

head surface potential function, for each sampled 

time moment, resulting in 500 ERP sets. The 

inversion of these sets to current values was then 

performed. The region where the unknown current 

sources were computed was restricted into a 

spherical shell, located at a radius of rS<r1, 

corresponding to the outer layers of the cortex [34]. 

A number of 60 current source positions distributed 

throughout the spherical shell, were investigated 

(Fig. 3).  

 

 
Fig. 3: Current source positions. The sources are distributed on 

a spherical shell layer, which is projected with the front of the 

head corresponding upwards. 

 

B) LORETA   
LORETA was used to compute the 3-dimensional 

intracerebral distributions of current density. This 

method was implemented by Pascual-Marqui [35] at 

the KEY Institute for Brain-Mind Research, 

University Hospital of Psychiatry, Zurich, 

Switzerland. The algorithm solves the inverse 

problem assuming related orientations and strengths 

of neighboring neuronal sources. Mathematically 

this assumption is implemented by finding the 

‘smoothest’ of all possible activity distributions.  

The LORETA version used in the present study 

[36], considered a three-shell spherical head model 

that was finally registered to the Talairach brain 

atlas [37]. Based on the digitized Talairach brain 

atlas and the probability atlas of the Brain Imaging 

Centre (Montreal Neurologic Institute), solution 

space was restricted to cortical gray matter and 

hippocampus. 

  

 
Fig 4: Three-dimensional representation of the solution space of 

LORETA consisting of 2,394 voxels at the spatial resolution of 

7 mm. The 478 sources selected after the dimensionality 

reduction are also presented in red color. 

 

The spatial resolution of the method was 7mm and 

the solution space consisted of 2,394 voxels, as 

presented in Fig. 4. According to LORETA 

algorithm the current density was computed at each 

voxel as the linear weighted sum of the scalp electric 

potentials. Thus, LORETA combines the high time 

resolution of the EEG/ERP with a source 

localization method that permits truly three-

dimensional tomography of the brain electrical 

activity. 

 

3.4 Intracranial Distributions Computation     
When the MVAR model is used, in ERP source 

modeling, it requires the definition of several 

parameters such as the number and kind of signals, 

the time interval of the examined waveforms and the 

order of the model used. Even though in our study 

we considered a fixed time interval (500-800 msec), 

the search space constructed by the combination of 

the remaining aforementioned parameters, seems 

practically non-manageable, especially for the case 

of the LORETA inversion, which computes a great 

number of intracranial signals (up to 2,394). 

Consequently, a pre-processing step is required 

before the feature extraction module for each of the 

inversion methods, in order to reduce the 

computational intensity of the procedure. 
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3.4.1 Source activity computed using BET-ART    
As a pre-processing step, the implementation 

process proceeded into three distinct Phases:  

In Phase-1, ERPs were inverted to 60 current source 

waveforms, covering the full set of source positions. 

The algorithm was allowed to create source position 

combinations from 40 positions, specifically 

positions 1-4, 6-11, 15-22, 28-37 and 45-56, i.e. the 

positions corresponding mainly to occipital and 

parietal regions were omitted from the allowed 

combination search space.  

In Phase-2, the number of positions from which the 

algorithm was allowed to create combinations was 

further restricted to 22 positions, specifically 

positions 2, 3, 8, 9, 17-20, 30-35 and 47-54, 

corresponding mainly to frontal, central and 

temporoparietal regions. 

In Phase-3, the allowed combination search space 

was as in Phase-2, but ERPs were inverted to 

current source waveforms restricted to the above set 

of 22 positions.  

The parameters used for the inversion problem 

solution were rS=8.7 cm, r1=9.0 cm, r2=9.7 cm, 

r3=10 cm, σ1=σ3=0.33 S/m, σ2=0.0042 S/m [38-42]. 

ART1 algorithm was implemented starting from an 

initial current source distribution X=X
0
=0, i.e. equal 

to the null vector, since no a priori information 

existed about the distribution and an unbiased 

solution was sought. As previous research has 

shown [34], when no estimate on the level of noise 

present in the recorded potentials exists, the best 

selection for the relaxation parameters is r
(q)

=1, ∀ q, 

and this value was used in the present work.  

In all phases, the order of the model used varied 

from 3 to 15 and the number of source positions in 

each combination varied from 2 to 8. The MVAR 

parameters were extracted for the time interval from 

500 to 800 msec, in correspondence to the ERPs’ 

P600 time interval. The parameters of the SA 

technique were determined experimentally and set 

to: initial guess=random, initial temperature=5, 

percentage of temperature reduction at each 

iteration=10%, number of temperatures=40, 

maximum number of combinations per 

temperature=40. Consequently, in accordance with 

the methodology given in Section 2.2 - Feature 

Extraction Module, for each model order that was 

investigated, an initial random combination of two 

source positions was selected and then the SA 

algorithm was implemented, leading to a selected 

feature vector for a source combination (kind and 

number) that might differ from the initial one. Then 

the same procedure was repeated for an initial 

random combination of 3 up to 8 source positions.  

 

3.4.2 Source activity computed using LORETA    
Α pre-processing step is initially performed, in order 

to reduce the total number of 2,394 input sources as 

obtained by LORETA. The source space was 

divided into small cubic neighbours by placing the 

source under investigation in the centre of the cube 

and the rest neighbour sources at the vertices. The 

waveforms of all the sources belonging to this cube 

were then compared by means of the correlation 

criterion. Based on this criterion the tests indicated 

that adjacent sources have similar waveforms. Such 

a finding seems quite reasonable because of the 

LORETA’s choice of the smoothest inverse solution 

and also of the relatively small electrodes/sources 

ratio (16/2,394 ≈ 1/150). Since similar waveforms 

do not affect the classification performance we can 

reduce the initial 2,394 input sources by a factor of 5 

ending up to 478 sources (see Fig. 4) uniformly 

distributed in the cortical gray matter and 

hippocampus. 

 The parameters of the SA technique were 

determined experimentally and set to: initial 

guess=random, initial temperature=5, percentage of 

temperature reduction at each iteration=5%, number 

of temperatures=50, maximum number of 

combinations per temperature=40. As in the case of 

BET-ART sources, the order of the model used 

varied from 3 to 15, the number of source positions 

in each combination varied from 2 to 8 and the 

MVAR parameters were extracted for the time 

interval from 500 to 800 msec. 

 

3.5 Classification Module      
The back-propagation algorithm with adaptive 

learning rate and momentum has been used in order 

to train the ANN [43]. The initial weights of the 

neurons have been randomly selected in the range [–

1.0, +1.0]. The log-sigmoid and tan-sigmoid 

activation functions have been used for the hidden 

and the output layer, respectively. The values of the 

learning rate and the momentum have been 

estimated using a process of trial-and-error, until no 

further improvement in classification could be 

obtained. 

In order to test the performance of the network, in a 

reliable manner, taking into account the limited 

number of control and patient subjects available, 

while aiming to avoid overtraining and achieve an 

acceptable generalization in the classification, the 

leave-one-out cross-validation procedure was 

adopted [9]. According to this procedure, the neural 

network is trained using all the patients and control 

subjects, except from one (no mater if is a patient or 

a control subject), which will be used for testing. 

The generalization ability of the specific network is 
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tested using the single excepted subject. The 

aforementioned training-testing procedure is 

repeated using a different subject for testing, until all 

subjects are used once each. Using the leave-one-out 

cross-validation procedure, the resulting ANNs 

present slight differences between each other, by 

inference of the slight variation of the training and 

validation sets and testing subject in each one. The 

classification performance parameters are computed 

by the aggregate sums of correctly classified or 

misclassified controls and patients. The main 

alternative to cross-validation procedures is the 

static-split procedure, according to which the whole 

subject set is divided into one training and one test 

set and the classification performance parameters 

are computed once for the testing set. In a variation 

of the static-split procedure, the subject set is 

divided into three sets, the training, the validation 

and the test set. The ANN is constructed based on 

the training set, but training is stopped when an error 

measure is minimized on the validation set, and then 

the classification performance parameters are 

computed once for the testing set. Therefore, using 

cross-validation procedures provides the opportunity 

to make multiple tests based on the existing subject 

set, employing the entire data for both training and 

testing, instead of one test of performance in the 

static-split procedures, based on the use of part of 

the data for training and another part for testing, 

which leads to a loss of available information. 

Consequently, the classification performance 

parameters computed using cross-validation might 

provide a more realistic approximation of the 

performance of the network, when it will encounter 

new data different from the data available in the 

present study, than the performance parameters 

computed using one fixed part of the subject set for 

testing in the static-split procedures.  

 

4 Experimental results   
4.1 BET-ART data    
Classification results obtained with the MVAR/SA 

method, using BET-ART data, are presented in 

Table 1. 

For Phase-1 of the feature extraction and 

classification process the highest classification rate 

(72.7%) was achieved for the source position 

combinations {8 17 18 20 32} for model order of 5, 

misclassifying 7 out of 30 normal controls and 5 out 

of 14 FES patients. The dimension of the feature 

vector produced by the feature extraction module 

was 125.  

For Phase-2 the highest classification rate, 86.3%, 

was achieved for the source position combination {8 

18} and for model orders of 6 and 8, respectively. 

The dimensions of the feature vectors produced by 

the feature extraction module were 24 and 32, 

respectively. For both combinations, 4 out of 30 

controls and 2 out of 14 FES patients have been 

misclassified by the proposed system. In Fig. 5(a) 

we present the topographical distribution of the 

source positions for this combination. 

 
Table 1: Performance of the MVAR/SA feature extraction 

method implemented on BET-ART data, for Phase-1, Phase-2 

and Phase-3. The first column corresponds to the model order 

(p), the second to the resulting dimension of the feature vector 

(D), while the two last columns present the classification rate 

(CR %) achieved by each source position combination and the 

ratio of misclassified controls to total (N=30) controls and 

misclassified patients to total (N=14) patients. 

Phase-1 

Source positions p D CR (%) 
Misclassified 

subjects 

8 17 18 20 32 5 125 72.7 7/30 - 5/14 

8 17 18 19 31 8 200 70.4 8/30 - 5/14 

3 4 15 16 33 35 4 144 70.4 9/30 - 4/14 

17 19 20 35 36 37 5 180 68.1 7/30 - 7/14 

Phase-2 

Source positions p D CR (%) 
Misclassified 

subjects 

8 18 4 16 84.0 4/30 - 3/14 

8 18 6 24 86.3 4/30 - 2/14 

8 18 7 28 84.0 4/30 - 3/14 

8 18 8 32 86.3 4/30 - 2/14 

8 18 9 36 84.0 4/30 - 3/14 

8 9 17 20 4 64 72.7 7/30 - 5/14 

8 16 18 6 54 70.4 8/30 - 5/14 

2 3 8 9 17 20 4 144 70.4 9/30 - 4/14 

Phase-3 

Source positions p D CR (%) 
Misclassified 

subjects 

8 18 32  4 36 93.1 1/30 - 2/14 

8 18 32 50 4 64 93.1 1/30 - 2/14 

3 8 18 32 4 64 93.1 1/30 - 2/14 

2 17 32 51  4 64 90.9 2/30 - 2/14 

33 34 35 7 63 86.3 2/30 - 4/14 

3 17 19 33 4 64 86.3 3/30 - 3/14 

8 18 32 49  4 64 84.0 4/30 - 3/14 

19 30 34 53 4 64 84.0  3/30 - 4/14 

17 20 32 52 7 112 72.7 7/30 - 5/14 

 

Finally, for Phase-3, a classification rate of 93.1%, 

was achieved for the source position combinations 
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{8 18 32}, {8 18 32 50} and {3 8 18 32} for model 

order 4. The dimensions of the feature vectors 

produced by the feature extraction module were 36, 

64, and 64 respectively. For these combinations, 1 

out of 30 controls and 2 out of 14 FES patients have 

been misclassified by the proposed system. In Fig. 

5(b-e), the topographical distribution of the source 

positions for these three combinations as well as for 

the combination {2 17 32 51} with a classification 

rate of 90.9%, are presented. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
Fig. 5: Topographical distribution of current source positions: 

(a) For the position combination {8 18}, providing the best 

classification rate (86.3%) in Phase-2 of the feature selection 

and classification implementation processes. (b-e) For the 

position combinations {8 18 32}, {8 18 32 50}, {3 8 18 32} and 

{2 17 32 51} providing a classification rate higher than 90% in 

Phase-3. In each figure, the sources are distributed on a 

spherical shell layer, which is projected with the front of the 

head corresponding upwards. The region that was included in 

the source position search space is located upwards from the 

dashed line. 

 

In Table 2, the sensitivity, specificity, negative 

predictive and positive predictive values are 

explicitly given for the optimum source 

combinations of each phase. The overall 

classification rates of Table 2 are the same as those 

given in the corresponding rows of Table 1 for the 

best current source combination of each phase. 

The computational time for the MVAR feature 

extraction process of all phases was 14 ± 1 min 

using a personal computer possessing an Intel 

Pentium 4 CPU, running at 2 GHz, with 1 GB RAM. 

Then, the computational time for the totality of the 

44 training-testing rounds needed to complete the 

leave-one-out cross-validation procedure was 1 min 

and 28 sec.  

 
Table 2: Sensitivity, specificity, negative predictive and 

positive predictive values calculated for the best source 

combination of each phase using the BET-ART method. 

Phase-1: {8 17 18 20 32}, p=5  

 Controls FES   

Controls 23 7 76.6 Specificity 

FES 5 9 64.2 Sensitivity 

 82.1 56.2 72.7 Overall 

classification rate 

 Negative 

predictive 

value 

Positive 

predictive 

value 

  

Phase-2: {8 18}, p=6  

 Controls FES   

Controls 26 4 86.6 Specificity 

FES 2 12 85.7 Sensitivity 

 92.8 75.0 86.3 Overall 

classification rate 

 Negative 

predictive 

value 

Positive 

predictive 

value 

  

Phase-3: {8 18 32}, {8 18 32 

50}, {3 8 18 32}, p=4 
 

 Controls FES   

Controls 29 1 96.6  Specificity 

FES 2 12 85.7 Sensitivity 

 93.5  92.3 93.1 Overall 

classification rate 

 Negative 

predictive 

value 

Positive 

predictive 

value 

  

 

 

4.2 LORETA data    
Classification results obtained with the MVAR/SA 

method are presented in Table 3. 

The highest classification rate (93.1%) was achieved 

for the source combination {766, 1521}. Sensitivity, 

specificity, negative predictive and positive 

predictive values are the same as in the best 

performance Phase-3 case for the BET-ART data. 

For combinations {1476, 1661}, {571, 366}, {946, 

1691}, {571, 1366} and {1336, 1431, 1921} the 

classification rate was 90.9% and for combination 

{881, 1266, 1496, 2226} was 88.6%. The 

dimensions of the feature vectors produced by the 

feature extraction module were 16, 20, 20, 20 16, 45 
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and 64 respectively. In Fig. 6 we present the 

topographical distribution of the source positions for 

optimum combinations.  

 
Table 3: Performance of the MVAR/SA feature extraction 

method implemented on LORETA source data. The first column 

corresponds to the model order (p), the second to the resulting 

dimension of the feature vector (D), while the two last columns 

present the classification rate (CR %) achieved by each source 

position combination and the ratio of misclassified controls to 

total (N=30) controls and misclassified patients to total (N=14) 

patients. 

Source positions p D CR (%) 
Misclassified 

subjects 

766, 1521 4 16 93.1 1/30 - 2/14 

1476, 1661 5 20 90.9 2/30 - 2/14 

571, 1366 5 20 90.0 2/30 - 2/14 

946,1691 5 20 90.9 3/30 – 1/14 

571, 1366 4 16 90.9 2/30 - 2/14 

1336, 1431, 1921 5 45 90.9 2/30 - 2/14 

881,1266,1496,2226 4 64 88.6 2/30 - 3/14 

 

The computational time for the feature extraction 

process of all phases was 21 ± 1 min using a PC 

(Pentium 4, 2 GHz with 1 GB RAM). The 

computational time for the classification process, as 

in the case of the BET-ART data, was in the range 

of seconds. 

The computational time for the MVAR feature 

extraction process was 21 ± 1 min using a personal 

computer possessing an Intel Pentium 4 CPU, 

running at 2 GHz, with 1 GB RAM. The 

computational time for the totality of the 44 

training-testing rounds needed to complete the 

leave-one-out cross-validation procedure was, as in 

the case of the BET-ART data, 1 min and 28 sec.  

 

 

5 Discussion   
The requirement to use information existing in 

concurrently recorded ERP source waveforms, leads 

to the creation of an unpractical large search space 

for selecting the MVAR model providing the best 

classification rate. The combination of the MVAR 

model with the SA optimization technique, as 

proposed in the present work, provides a principled 

way to reduce the computational complexity of the 

search process. Nevertheless, even using the SA 

technique, we followed a gradual approach 

concerning the degrees of freedom allowed in the 

search process, so that a compromise between 

satisfactory classification rates and computational 

complexity is reached. The classifier that has been 

used is cross-validated, so as to overcome, as far as 

possible the limited number of patients subjects and 

also to provide a classifier that is less prone to 

overfitting the existing data.  

In Phase-1 of the feature extraction and 

classification process for the current sources (sub-

section 3.4.1), 20 positions corresponding mainly to 

occipital and parietal regions were omitted from the 

allowed combination search space. In Phase-2 the 

search space was further restricted to 22 mainly 

frontal, central and temporoparietal positions. The 

focus of the present study on sources reflecting 

activity of frontal, central and temporoparietal brain 

regions, has been based on evidence from previous 

investigations suggesting the involvement of those 

regions in schizophrenic symptomatology [44]. 

 
 

 (a) 

 (b) 

 (c) 

 (d)   

(e) 

(f)                                  

(g) 

Fig. 6: Horizontal planes of optimum source combinations, 

registered to the cortical gray matter and hippocampus of the 

Talairach brain atlas. (a):{766, 1521}, (b):{1476, 1661}, 

(c):{571, 1366}, (d):{946,1691} (e):{571, 1366}, (f):{1336, 

1431, 1921}, (g):{881, 1266, 1496, 2226}  
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The performance in the current source classification 

case of Phase-2 was improved as compared to 

Phase-1. The larger domain search in Phase-1 did 

not have to end necessarily with the same or similar 

results with the reduced domain search that took 

place in Phase-2, since the search, concerning the 

possible combinations of source positions, was not 

exhaustive and the optimality of the final selection, 

for each model order, depends on the performance 

of the SA technique (see end of sub-section 3.4.1 - 

Source activity computed using BET-ART). By 

restricting the source position search space to 

frontal, central and temporoparietal positions during 

the transition from Phase-1 to the Phase-2, the 

method became more «focused» on a 

topographically reduced search space and there 

existed the possibility that the MVAR/SA algorithm, 

having a smaller space to search, would be less 

easily trapped into less than optimal local minima, 

as might have been the case for the larger search 

domain in Phase-1. At this point it should be noted 

that when similarly topographically restricted search 

spaces were investigated, covering other brain 

regions, no significant improvement in the 

performance of the system, as compared to Phase-1 

was found. The transition from Phase-2 to Phase-3 

of the implementation process for the current source 

classification problem provided a further 

improvement. In Phase-3, not only the search space 

was reduced, as in Phase-2, but the whole source 

activity was assumed to take place in the 22 

positions defined in Phase-2. This assumption 

implies that no significant electrical activity related 

to the experimental task condition takes place in any 

other position apart from the considered set of 22 

positions. This might not be possibly justified solely 

on indications of brain studies in schizophrenia, 

which nevertheless stress the importance of some of 

the regions corresponding to these positions [44]. 

Phase-3 investigation was undertaken in an effort to 

provide a set of current source waveforms that 

would be searched by the MVAR/SA method 

making use, through the inversion process, of the 

whole information present in the initial ERP curves. 

It remains to be elucidated in future studies whether 

the use of the whole information present in the 

initial ERP curves is a reason for the improvement 

found in the classification results. 

Apart from using a sub-set of the available current 

source positions for creating the search space, 

during the implementation process, the proposed 

system allowed a maximum number of 8 source 

positions for the current source classification case, 

to be combined for the calculation of the MVAR 

coefficients. This decision was also taken in order to 

reduce the computational complexity of the search 

process. After several trials, it was found that 

optimal classification results corresponded to 

combinations consisting of less than 8 source 

position. As a result, further expansion of the 

process, by combining more than 8 source positions, 

was deemed not necessary.  

In the case of the LORETA method, the compromise 

between satisfactory classification rates and 

computational complexity was taken in one step, by 

subsampling the initial number of sources, after a 

principled step-wise approach. In this case, no 

restrictions were placed on which brain regions 

would be investigated, so as to make use of one of 

the main advantages of the currently publicly 

available LORETA software implementation, i.e. 

the correspondence of source positions to specific 

Talairach coordinates and brain voxels. 

The use of data from two inversion techniques has 

been used to compare the results they provide, both 

concerning the classification rate, as well as the 

indications about the intracranial source positions 

that seem to be implicated in the best classification 

cases. A first conclusion that may be reached, 

through the data set used in the present study, is that 

comparable classification results are achievable. 

Furthermore the intracranial signals of right frontal 

regions provide the best results in both methods. 

Both of the above similarities in performance are 

interesting, taking into account the different electric 

models used by the methods. The above comparison 

should also be done having in mind the limitations 

of the BET-ART method concerning spatial 

resolution [34]. 

The present study concentrated on the time interval 

corresponding to the P600 ERP component. The 

motivation for selecting the P600 component is 

based on research indicating its relation to cognitive 

processes, such as its association to mnemonic 

binding processes, by which internal and external 

aspects of information are linked into a coherent 

representation [45], leading to the conceptualization 

of P600 as an index of information processing that 

assigns a specific response to a specific stimulus 

[46].  

The rationale for investigating, the capacity of 

current source waveforms in providing satisfactory 

classification performance, is that intracranial 

currents computed by the scalp-recorded ERPs, 

provide information on the non-observable electrical 

phenomena taking place in the brain, related to the 

cognitive mechanisms induced by the experimental 

task used in the ERP recording procedure. 

Therefore, the existence of source positions that are 
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repeatedly present in combinations providing 

satisfactory classification results, for various model 

orders and implementation phases, such as positions 

8 and 18, may indicate the significance of the brain 

regions corresponding to those positions, in 

differentiating between normal and pathological 

mechanisms in schizophrenia, in agreement to 

research results concerning the involvement of those 

regions in schizophrenia [44]. On the other hand, 

though features extracted from intracranial 

quantities might be more closely related to the actual 

pathophysiological processes, attention should be 

given to the fact that overlearning may still occur 

and be harmful, even if the used features are closely 

related to the modeled processes, as long as they do 

not cover exhaustively any possible input instances. 

 

6 Conclusions and future plans   
In this paper, a methodology for the classification of 

intracranial signals was proposed for the case of 

FES patients where the existing markers are 

inconclusive. The proposed methodology combines 

the MVAR/SA method for the feature extraction of 

the input signals with a cross-validated ANN for the 

classification. Two different input signals had been 

used to test the performance of the system: 

intracranial waveforms computed using BET-ART 

and LORETA methods. The maximum obtained 

classification rate of 93.1% showed that specific 

source combinations could be used as inputs to a 

DSS in order to successfully classify FES patients 

from normal controls.  

The methodology was based on a number of 

constraints. These constraints refer to (a) the number 

of source positions, which constitute the allowed 

search space, (b) the time interval of current source 

signals modeled and (c) the model order in the 

MVAR/SA method and the number and kind of the 

sources, and (d) the limited number of subjects 

available for the study. Especially concerning the 

last constraint, it should be noted that patient 

samples are often unavoidably restricted due to the 

kind of psychopathological entities that are 

investigated, such as FES and in order to overcome 

as much as possible this limitation the leave-one-out 

cross validation procedure was used. 

Further research is currently carried out in order to 

incorporate other psychiatric disorders in the system, 

for example drug addicts and patients suffering from 

Obsessive Compulsive Disorder (OCD). The 

proposed approach could, in principle, be applied for 

more complex biosignal classification tasks, e.g. for 

the case of individuals that could be affected by 

several neuropsychiatric conditions, without the 

prior diagnosis reducing the problem to a 

dichotomy. This would require, for example, the 

construction of an ANN with as many output layer 

neurons as the neuropsychiatric conditions for which 

the system would be designed to handle, plus one 

for the normal subjects class, and a very extended 

subject set for training and testing the network. The 

set should include all the possible classes of 

subjects, i.e. classes representing only one condition 

and classes representing possible comorbidities. 

This is a daunting task, especially concerning the 

collection of recordings from a significant number 

of matched groups of subjects, with and without 

comorbidities. Furthermore, as the classes to be 

differentiated by the system are augmented, it 

remains to be verified whether the MVAR model 

will continue to fit the various classes in a manner 

useful for classification purposes. As a first tentative 

step in this direction, ongoing work in our 

laboratories aims at extending the methodology 

proposed in the current study to pairs of 

neuropsychiatric conditions. Another important 

aspect of ongoing research concerns the comparative 

evaluation of additional ERP inversion techniques 

that have been proposed in the literature, in order to 

compare the classification performance provided by 

the various parameters modeling brain electrical 

phenomena, according to each inversion technique. 
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