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Abstract We review two versions of a new topology preserving mapping, the HaToM. This
mapping has previously been investigated as a data visualization tool but, in this paper, we in-
vestigate empirically the quantization errors in both versions of the mapping. We show that the
more model driven version does not minimise the quantization error either when it is calculated
in the usual manner or when we use the Harmonic average to do so. Somewhat surprisingly the
model driven method lowers the quantization error more quickly than the data-driven method.
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1 Introduction

Topology-preserving mappings such as the Self-
organizing Map (SOM) [3] and the Genera-
tive Topographic Mapping(GTM) [1] have been
very popular for data visualization: we project
the data onto the map which is usually two
dimensional and look for structure in the pro-
jected map by eye. Therefore when we intro-
duced a new topographic mapping, the Har-
monic Topographic Mapping (HaToM) [4], our
first concern was its use as a data visualization
mechanism. However, more recently we have
investigated other uses of this mapping such as
outlier detection [6] and as a forecasting tool
[5].

Forecasting relies on the fact that topo-
graphic maps may also be used as data quan-
tiZers: typically these maps are built around
a number of centres and we may allocate data
points to the centres to which they are clos-
est. This is not the main use of topographic
maps but is one to which they are often ap-
plied. The Harmonic Topographic Mapping
was built on the success of Harmonic K-Means
[8, 7] which was designed as a data quantization
method. This raises the question which we ad-
dress in this paper: how good are the variants
of HaToM as data quantizers? We first review

two versions of HaToM before addressing this
question.

2 Harmonic Averages

Harmonic Means or Harmonic Averages are de-
fined for spaces of derivatives. For example, if
you travel 1

2 of a journey at 10 km/hour and
the other 1

2 at 20 km/hour, your total time
taken is d

10 + d
20 and so the average speed is

2d
d
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= 2
1
10
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. In general, the Harmonic Av-

erage of K points, a1, ..., aK , is defined as

HA({ai, i = 1, · · · ,K}) =
K∑K

k=1
1
ak

(1)

2.1 Harmonic K-Means

The Harmonic Means were applied to the K-
Means algorithm in [8] to make the K-means a
more robust algorithm. The recursive formula
to update the means is

mk =

∑N
i=1

1
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(2)

where di,k is the Euclidean distance between
the ith data point and the kth centre.
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[8] have extensive simulations showing that
this algorithm converges to a better solution
(less prone to finding a local minimum because
of poor initialisation) than both standard K-
means or a mixture of experts trained using
the EM algorithm.

3 The Harmonic Topograpic
Map

The Harmonic Topographic Map (HaToM) was
developed as an alternative to the Topographic
Product of Experts (ToPoE) [2], which is also
based on the GTM. The HaToM has the same
structure as the GTM, with a number of latent
points that are mapped to a feature space by
M Gaussian functions, and then into the data
space by a matrix W. Each latent point, in-
dexed by k is mapped, through a set of M basis
functions, Φ1(tk), Φ2(tk), · · · , ΦM (tk) to a cen-
tre in data space, mk = Φ(tk)W . The weights
in the HaToM are adjusted using the Harmonic
K-Means algorithm; it gains its topology-
preserving properties from the arrangement of
points in the latent space.

The basic batch algorithm often exhibited
twists, such as are well-known in the SOM
[3], so we developed a growing method that
prevents the mapping from developing these
twists.

We developed two versions of the algorithm
(see [4]). The main structure for the Data-
driven HaToM or D-HaToM is as follows:

1. Initialise K to 2. Initialise the W weights
randomly and spread the centres of the M
basis functions uniformly in latent space.

2. Initialise the K latent points uniformly in
latent space.

3. Calculate the projection of the latent
points to data space. This gives the K
centres, mk.

(a) count=0

(b) For every data point, xi, calculate
di,k = ||xi −mk||.

(c) Recalculate centres, mk, using (2).

(d) If count<MAXCOUNT, count=
count +1 and return to 3b

4. Recalculate W using (ΦT Φ + δI)−1ΦTΞ
where Ξ is the matrix containing the
K centres, I is identity matrix and δ is
a small constant, necessary because ini-
tially K < M and so the matrix ΦT Φ is
singular.

5. If K < Kmax, K = K + 1 and return to
2.

We do not randomise W each time we augment
K. The current value of W is approximately
correct and so we need only continue training
from this current value.

In the Model-driven HaToM or M-HaToM,
we give greater credence to the model by recal-
culating W and hence the centres, mk, within
the central loop each time. Thus we are ex-
plicitly forcing the structure of the M-HaToM
model on the data. The projection method
is the same as above. In [4], we showed that
this version had several advantages over the
D-HaToM: in particular, the M-HaToM cre-
ates tighter clusters of data points and finds an
underlying data manifold smoothly no matter
how many latent points are used in creating the
manifold. The D-HaToM, on the other hand, is
too responsive to the data, but as shown in [6],
this quality makes it more suitable for outlier
detection.

However, till now it remains an open ques-
tion as to how the addition of topology-
preserving properties affects the data quanti-
zation properties of the underlying Harmonic
K-Means algorithm. We now investigate this.

4 Simulations

We investigate this issue in the context of an
artificial data set so that we may control every

2

Proceedings of the 5th WSEAS International Conference on Signal Processing, Istanbul, Turkey, May 27-29, 2006 (pp105-110)



aspect of this experimental investigation. We
create a data set with 4 clusters of data, each
of 250 two dimensional points. The first 250
points are taken from a uniform distribution
in [0,1]×[0,1], the second 250 are in [0,1]×[3,4],
the third 250 are in [3,4]×[0,1] and the last 250
are in [3,4]×[3,4]. Sample data and the posi-
tions of the latent points’ projections found by
one simulation at 4 separate growing stages of
the D-HaToM are shown in Figure 1. We note
that, at the third stage shown, with 9 latent
points, there is a centre which lies between two
clusters of data. This may be useful for visu-
alisation purposes since data points when visu-
alised in latent space may lie between this point
and those of its neighbours, however when we
consider clustering distances, this point will not
feature directly since it never is the projection
of a latent point which is closest to any data
point. However, as we shall see, such points do
have an indirect effect on the quantization er-
ror (particularly for the M-HaToM) since they
pull other latent points’ projections away from
the centre of the data.

We show in Figure 2, the decrease in the to-
tal distance between each of the 1000 data sam-
ples and the nearest latent point to each sam-
ple as we train a one dimensional D-HaToM.
The ’one-dimensional’ refers to the dimension-
ality of the latent space: we begin with 2 la-
tent points in a line and increase this gradually
throughout the simulation till we have 21 la-
tent points in a line. We note that this data
set is not ideal for the mapping in that there is
a mismatch between the dimensionality of the
data and that of the map, however it allows
us to illustrate the main points with respect to
quantization error. Each time we augment the
number of latent points we train the D-HaToM
for 20 iterations and refer to this as the grow-
ing cycle. Unsurprisingly we see that the total
quantization error decreases as we add latent
points; however, later additions to the number
of latent points do not monotonically decrease

the quantization error as they should with K-
Harmonic Means.

We show the results of repeating this with
the M-HaToM in Figure 3. We see the same
gross features however the details are rather
different. We see that addition of latent points
at first can cause an increase in total distance
but that this then falls. However later in the
simulation when we add a new latent point
the total quantization error often decreases as
we add a new latent point and then increases
slightly as we go through the growing cycle. In
the right diagram of Figure 3, we see this hap-
pening as we go from 15 → 16 → 17 → 18.
Thus the re-imposition of the model is having
an adverse effect on total quantization error.

This might suggest that we can remove the
growing cycle from the simulation: simply in-
crease the number of latent points and omit the
growing cycle training. We show the quantiza-
tion error from such a simulation on the same
data as before with the D-HaToM 1 in Figure 4
in which we can see that the quantization error
does in fact decrease. However a substantial
growing cycle length is essential for good visu-
alization as we illustrate in the right diagram
of that figure; the two dimensional D-HaToM
has been run on this data set with a growing
cycle of just 2 iterations but has failed to fill
the data space.

5 Conclusion

We have investigated quantization errors in
both the D-HaToM and the M-HaToM. Pre-
vious research had concentrated on their use
as visualization tools, however these mappings
can also be used as quantizers. We have shown
that we may estimate the number of clusters
in a data set using the quantization error but
that the decrease in quantization error is not
monotonic. This is true of both versions of
the mapping, however it is most pronounced for
the M-HaToM in which we are re-asserting the

1There is actually no difference between the varieties when we remove the growing cycle training.
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Figure 1: The positions of the data and the latent points’ projections with D-HaToM when the
number of latent points is 2, 4, 9 and 10 at the end of each growing cycle.

model’s priority at each iteration. Indeed with
the M-HaToM, we often see the quantization
error decrease with the addition of a new la-
tent point only to increase as training with the
new latent point continues. However, we have
shown that, while this may be true of quantiza-
tion error, a map which is trained with a very
short growing cycle is not so useful since it fails
to capture the main features of the data.

Finally we investigated the effect of train-
ing on the quantization error calculated by har-
monic averages and found similar behaviour in
general but different in details. The D-HaToM
quantization error so calculated takes longer to
decrease than that of the M-HaToM but even-
tually gets to a lower figure.

Future work will investigate quantization
errors on real data sets.
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Figure 2: The decrease in the total distance between data and the nearest latent point projection
as the number of latent points is grown from 2 to 21 in the D-HaToM. We use 20 iterations per
growing cycle. In the right diagram, we have zoomed in to a section of the map.
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Figure 3: The decrease in the total distance between data and the nearest latent point projection
as the number of latent points is grown from 2 to 21 in the M-HaToM. We use 20 iterations per
growing cycle. In the right diagram we show the change in quantization error as the number of
latent points grows from 15 to 18.
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Figure 4: Decrease in the total distance between data and the nearest latent point projection
as the number of latent points is grown from 2 to 21 with the D-HaToM and a single iteration
in the growing cycle. Right: a two dimensional D-HaToM with a growing cycle length of 2 fails
to map the data.
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