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UMUT GÜNDOĞDU1, ALAATTİN SAYIN1, AYDIN AKAN1, YUNUS ZİYA ARSLAN2
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Abstract: - When a muscle cannot maintain the sustained contraction against a certain force level, this situation
points out the onset of muscle fatigue. In many bio-mechanical studies, it is pursued to determine the fatigue by
using electromyography signals, but none of them is capable of characterizing the fatigue in a quantitative manner.
The need for determination of a fatigue index from the point of view of quantitative evaluation is derived from the
use in physiotherapy exercises. In this study, EMG signals are recorded from biceps and triceps muscles during
isometric contraction from 12 healthy subjects. Then, median frequency, and temporal and spectral moments,
which are characterizing features of EMG signals are calculated. It is concluded that using higher order temporal
and spectral moments for determining the muscle fatigue improves the performance compared to using only change
in the median frequency.
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1 Introduction
The signals recorded during electromyography show
bioelectrical activity of the muscle fibers. Analysis of
the EMG signals is one of the methods for the qualita-
tive evaluation of human skeletal muscle fatigue [1].

Most of the neuromuscular diseases are progres-
sive in nature and therefore cause increasing amounts
of functional loss. The degree of functional loss as
well as the progression rate change depending on the
type of the disease. Although routine EMG investi-
gation gives so many clues for the diagnosis of these
neuromuscular diseases, it does not measure muscle
weakness quantitatively. However, most of the time,
patients seek medical attention because of increasing
amount of weakness rather than the diagnosis which is
already known. The only method to report this weak-
ness is clinical muscle power testing that gives results
depending on physician’s skills. From this point of
view, it is reasonable to assume that the EMG signals
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recorded from the muscles of the patients may reveal
the degree of weakness quantitatively after the proper
signal processing. Repeated EMG recordings and de-
tection of fatigue threshold over time, would be the
quantitative measure for increasing amounts of weak-
ness. Besides, using surface electrodes for EMG signal
recording will make this investigation non-invasive. It
is also possible to repeat measurement as many times
as needed without giving any trouble to the patient.

The final common pathway for motor performance
is a functional unit called motor unit. This unit in-
cludes lower motor neuron, its axon and all muscle
fibers innervated by this particular axon. Lower mo-
tor neuron depends on the upper motor neuron for its
function. During steady contraction (isometric con-
traction), target muscles get fatigue by physical and
biochemical manner. Because of the fatigue, it is ex-
pected to have less and less amounts of power from the
muscle under investigation during sustained isometric
contraction. However, human body tries to compen-
sate this fatigue effect by modulating the firing fre-
quency of motor units under the commands of upper
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motor neuron drive. This compensation causes to more
synchronous firing of motor units leading to an increase
of the amplitude of EMG signal. At the same time,
synchronous firing causes grouping of motor unit dis-
charge which can be seen as an increase of low fre-
quency sinusoidal contributors of raw EMG data.

In electromyography, one of the most common tech-
niques for extracting features used to classify the sig-
nal is integration [1]. Integration of a signal m(t) is
performed via calculating the area under the signal af-
ter rectification [1];

I{|m(t)|} =
∫ t

0
|m(τ)|dτ (1)

Since the rectified value is always positive, I{|m(t)|}
is a function of time which is always positive. Similar
to above, a time varying integrated rectified value can
be calculated under a time window [1]:

I{|m(t)|} =
∫ t+T

t
|m(τ)|dτ (2)

If the integration duration, T is selected long enough,
equation (2) will characterize the variation of the sig-
nal smoothly with respect to time. On the other hand,
analysis of EMG signals in frequency domain renders
some specific frequencies (i.e. mean and median fre-
quencies) observable. Fast Fourier Transform tech-
niques are very common methods for obtaining power
spectral density (PSD). Three parameters of PSD con-
tain very fundamental knowledge about frequency dis-
tribution of the signal. These are the mean frequency,
the median frequency and the bandwidth of the spec-
trum and frequently used to obtain a fatigue index from
EMG signals in fatigue research [1, 2, 3]. Median fre-
quency is the frequency value that divides the spectrum
into two equal parts. Mean frequency is the average
frequency of the power spectrum. Median and mean
frequencies are defined as [1, 3]:

∫ fmed

0
Sm(f)df =

∫ ∞

fmed

Sm(f)df (3)

fmean =

∫∞
0 fSm(f)df∫∞
0 Sm(f)df

(4)

Here Sm(f) is the power spectrum, fmed and fmean

are the median and mean frequencies of the EMG sig-
nal respectively.

2 Measurement Set-Up
The EMG measurements are carried out at Istanbul
University, Istanbul School of Medicine, Department
of Neuroscience. Signals are recorded from 12 healthy
male subjects during isometric contraction on their right
arms. The aim of this experimental set-up is to apply
a force to arm tip to cause a muscle contraction and in
time result in muscle fatigue. While the muscles are
contracted EMG signals are gathered from biceps and
triceps muscles simultaneously.

The position of the arm is fixed parallel to the floor,
and forces are applied to the hand while keeping this
position unchanged. The forces are chosen such that
they cause a tiredness at the muscle, i.e., about 30-40
% of the maximum voluntary contraction. The record-
ings are repeated four times for each subject, to have
enough signals and to provide unbiased measurements.
The forces are applied using a simple pulley system
and perpendicular to the arm tip.

In our experiments, considering the isometric con-
traction of the arm parallel to the ground, we record
EMG signal form the most actively contracted muscles
i.e., biceps brachii and triceps that are also opposite of
each other (agonist-antagonist muscle pair) and dura-
tions of the recordings are 140 seconds.

During EMG recordings, electrodes are required to
tightly contact the muscle surface. For a healthy signal
acquisition, a conducting gel is applied between mus-
cle and electrode surfaces. Furthermore, electrodes are
placed exactly at the center of the muscles (muscle
belly) to minimize cross-talk effect. After recording,
EMG signals are filtered between 10 Hz and 500 Hz
and then sampled at 5 kHz.

3 Representation of EMG Signals by
Higher Order Moments
Power Spectral Density of signals gives valuable in-
formation for the characterization of deterministic and
random stationary signals. Power spectrum of a sig-
nal shows the distribution of power among signal fre-
quency components. This information is only suffi-
cient for Gaussian and linear processes and it does not
show any phase relations between frequency compo-
nents. However, there are non-Gaussian and non-linear
processes in practical situations, such as biomedicine,
oceanography, sonar, radio astronomy and sunspot data
where power spectrum may not give enough informa-
tion. In such cases, higher than second order statistics
of the signal are used for detection of non-Gaussian
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and non-linear properties of the signal. Higher Order
Spectra (HOS), also known as Polyspectra, is defined
[4, 5, 6, 7] as the Fourier transform of higher order
statistics of a stationary signal. HOS of a signal can be
defined in terms of its moments and cumulants. Mo-
ments can be very useful in the analysis of determinis-
tic signals whereas cumulants are of great importance
in the analysis of random signals.

In this paper, we propose a different approach from
the ones in the literature [2, 3] where we use higher or-
der time and frequency moments of the signal together
with median frequency for characterizing fatigue by
using the EMG signal. First, in order to calculate sta-
tistical moments, the power spectra, P (ω) of EMG sig-
nal segments are estimated by using periodogram ap-
proach [8]. The periodogram estimate of the power
spectral density of a random signal x(t) with a time
duration of T is given by:

Px(ω) =
1
T
|X(ω)|2 (5)

where X(ω) denotes the Fourier transform of x(t).
In statistical mean, periodogram estimate converges to
power spectrum of random process. In our implemen-
tation, Discrete Fourier Transform (DFT) is used to
calculate periodogram estimate of windowed signals.
EMG signal x(n), 0 ≤ n ≤ N − 1 is first multiplied
by a sliding window to generate segments of the sig-
nal:

xm(n) = x(n)w(n−mL) m = 0, 1, · · · (6)

where L is the amount of window shift which is taken
as 1/4 of the effective window length. Using short-
time segments to analyze the frequency content of EMG
signal allows us to track the time-variations in the sig-
nal due to change of force better than taking the whole
spectrum. Then the DFT, Xm(ωk), of the short-time
signal xm(n) is calculated, and the power spectral es-
timate is obtained as:

Pm(ωk) =
1
N
|Xm(ωk)|2. (7)

Pm(ωk) contains enough information to characterize
the EMG signal and it is also used in previous stud-
ies [9, 10, 11]. However, for a signal of length N ,
it is required to calculate an N sample power spec-
tral estimate, which means very large number of fea-
tures and a high computational burden. Especially,
because of the long durations of the EMG recordings

taken to observe the fatigue in muscles, this situation
introduces the capacity problem. Instead of the whole
power spectrum, using a few features extracted from it
will be a computational advantage [9]. In our proposed
method, after power spectrum estimation for the seg-
ments of EMG signal, higher order time and frequency
moments are calculated and used as the characterizing
features, besides the median frequency. Higher order
moments carry the higher order statistical information
of a random signal [9, 10, 11]. Temporal and spectral
moments of a signal x(n) are given by [9]

< ni >=
∑

n

ni P (n) i = 0, 1, 2, ...

< ωj
k >=

∑

k

ωj
k P (ωk) j = 0, 1, 2, ... (8)

respectively. Here P (n) = |x(n)|2 is the energy den-
sity in time and P (ωk) = |X(ωk)|2 is the energy den-
sity in frequency where X(ωk) is the discrete Fourier
transform of x(n).

The frequency domain analysis of a stochastic and
non-stationary signals such as EMG, does not reveal
the time domain variations of the signal. Hence in our
implementations, EMG signals are windowed into 1
sec. segments, then power spectrum and median fre-
quency of each segment are calculated. In this way,
the short-time signal in these segments are assumed
stationary and then frequency distribution calculation
which has the number of sliding window is carried out.

4 Results
The measured EMG signals of a muscle which is con-
tracted under constant strength and position show in-
crease in amplitude of signals and decrease in the com-
ponents of high energy level frequency with time [12,
13, 14, 15]. These changes can be used to describe the
fatigue of target muscles [16, 17, 18, 19]. For random
signals such as EMG, power spectral density can be
estimated either by classical (i.e. Periodogram, etc.)
or by modern parametric or nonparametric (i.e., AR,
ARMA, Burg, Capon, etc.) methods. However, the
mean and median frequency values of the nonstation-
ary EMG signals might be failed to determine muscles’
fatigue [3, 20]. In addition these values unable to de-
termine fatigue threshold and classification in people
who are specific age, gender and body mass index. On
the other hand, the window width chosen to process
signals can alter the mean and median frequency val-
ues [3]. Therefore, the reliability of frequency analysis
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only for fatigue evaluation is still being controversial.
In this study according to this approach, muscle

fatigue cannot be demonstrated by using;

1. only median frequency, in 25 % of the record-
ings;

2. only time moments, in 26 % of the recordings;

3. only spectral moments, in 20 % of the record-
ings;

4. both median frequency and time moments, in 7
% of the recordings;

5. both median frequency and spectral moments, in
7 % of the recordings;

6. both time moments and spectral moments, in 20
% of the recordings.

In conclusion, muscle fatigue can be successfully
characterized in 93 % of the subjects by using both me-
dian frequency and spectral moments or both median
frequency and time moments. Fig. 1 shows the EMG
signals, which are recorded from biceps brachii and
triceps muscles during isometric contraction. Fig. 2
depicts fatigue related median frequency time moment
and spectral moment changes calculated from EMG
signals shown in Fig. 1.

5 Concluding Remarks
In this study, EMG signals were recorded in order to
determine the fatigue of the arm muscles while they
were contracting against a fixed load under isomet-
ric condition. Then, the median frequency, temporal
and spectral moments of short-time EMG segments are
calculated. Median frequency is known to be one of
the characterizing features of EMG signals. Our simu-
lation results showed that using only median frequency
to determine fatigue is not sufficient. Therefore, em-
ploying temporal or spectral moments together with
median frequency, which are also extracted from the
signal as features, might improve the performance of
fatigue analysis.
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Fig. 1. Examples of EMG signals recorded from bi-
ceps brachii and triceps muscles
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Fig. 2. a) Change in the median frequency, b) change
in the temporal moments c) change in the spectral mo-
ments with fatigue.
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