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Abstract: A new intelligent noise filtering approach using Computational Intelligence (CI) is proposed for the 
problem of adaptive noise cancellation (ANC). Since the traditional linear filtering may not be good enough to 
handle with the noise complexity and time-varying statistic property, a self-constructing neuro-fuzzy system 
(SCNFS) is used as an adaptive filter to deal with the nonlinearity of noise. A hybrid machine learning algorithm 
with the methods of both random optimization algorithm (RO) and least square estimation (LSE) is introduced 
to enable the SCNFS with learning capability. The learning capability includes both the parameter learning and 
the structure learning. In the parameter learning phase, the premises and the consequents of the SCNFS are 
updated by RO and LSE, respectively. In the SCNFS structure learning, the system structure can be generated or 
rearranged using the proposed mechanism with rule-splitting and/or rule-expanding. To demonstrate the 
feasibility and the capability of the proposed approach, an example of adaptive speech noise cancellation is 
illustrated. With the experimental results, the SCNFS shows excellent filtering performance for noise 
cancellation. 
 
Key-Words: - computational intelligence, neuro-fuzzy, learning, random optimization, least square estimation, 
adaptive noise cancellation. 
 
1.   Introduction 
In the past decades, the increasing noise influences 
on engineering applications have encouraged the 
development of noise canceling. In principle, the 
problem of adaptive noise filtering is to extract a 
desired signal from its corrupted version [1]. 
Generally, noise is usually highly nonlinear and 
correlated with uncertain factors. Traditional linear 
filters like FIR or IIR filters may not be good enough 
to handle with the complexity of noise nonlinearity. 
Recently, adaptive filtering may provide better 
solution to noise filtering problem. Adaptive systems 
as adaptive filters possess the characteristics of 
self-adjustment, and/or intelligent strategy to 
practical applications with limited priori information. 
Recently, engineers and scientists have focused their 
attention to model-free approaches and the 
intelligence-based theories such as fuzzy logic [2] 
and neural network [3]. Since fuzzy inference 
systems and neural networks have been shown being 
universal approximators [4, 5], the integration of 
neuro-fuzzy system (NFS) has widely been 
recognized a complementary model that allows for 
low-level learning and computational power and 

high-level human thinking and knowledge 
representation. The objective of soft computing 
based approach for adaptive noise filtering is to 
attenuate or eliminate noise from the corrupted signal. 
 Generally, establishing an NFS includes the structure 
complexity and the parameter identification. For 
structure complexity, the partition of the input-output 
space and the identification of appropriate rules to 
achieve the desired performance have received much 
attention. Several approaches [6, 7, 8-10] have been 
addressed to achieve compact and effective system 
structure. However in these approaches the balance 
between the number of hidden neurons and the 
system performance is concerned before training. 
The grid-type partitioning is often suffered from the 
problem commonly referred to as the “curse of 
dimensionality”, in which the rule number will 
become exponentially large if the input dimension 
increases. In order to avoid the problems of 
over-parameterization and to ensure structure 
concision, this depends heavily on experience and a 
tedious trail-and-error. Thus, it is usually needed to 
have a “smarter” mechanism for system learning. A 
new intelligent filtering approach with self 
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constructing neuro-fuzzy system (SCNFS) is 
proposed for the problem of adaptive noise 
cancellation (ANC). The goal of noise cancellation is 
to extract the desired signal from its noise-corrupted 
version by using the proposed SCNFS as a 
computational intelligence (CI) based adaptive filter. 
In the paper, a hybrid learning algorithm with the 
random optimization algorithm (RO) and the least 
square estimation (LSE) is used for the NFS to 
perform structure learning and parameter learning 
simultaneously. In the parameter learning phase, the 
RO [11, 12] is combined with the LSE to train the 
parameters of the SCNFS, where the premises and 
the consequents of the SCNFS are updated by RO 
and LSE, respectively. The structure learning is 
composed of two phases, which are the rule-splitting 
phase and rule-expanding phase. In the structure 
learning, appropriate rules can be generated and/or 
rearranged with the proposed mechanism for rule 
significance detection. With the proposed hybrid 
learning, a compact-sized and well-parameterized 
NFS can be established with good system 
performance. The proposed SCNFS features the 
following salient properties: 1) online rule 
construction, 2) intuitive and derivative-free learning, 
3) easy to program, and 4) fast convergence and 
robustness. The problem of the adaptive noise 
cancellation is given in section 2. In section 3, the 
structure of neuro-fuzzy system is presented. In 
section 4, the RO-LSE hybrid learning algorithm is 
discussed. In section 5, the self construction scheme 
for structure learning is discussed. The proposed 
SCNFS filtering to the noise canceling application is 
illustrated in section 6. Finally, the paper is 
concluded. 
 
2.   Adaptive Noise Cancellation 
The noise-canceling diagram is shown in Fig. 1 [1]. 
An input signal contaminated by the noise y(t) is 
transmitted to the receiver. With the diagram, the 
received signal  )(tmrs  can be described as follows. 
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where )(⋅channelf  represents the noise passage channel, 
n(t) the noise source, x(t) the clear signal. The basic 
principle of the adaptive noise cancellation is to 
estimate the desired signal from the corrupted version. 
The following assumptions are given. 
1) x, y and n, are zero-mean process. (statistical 
stationary and zero means). 
2) x are uncorrelated with n and y. 
3) n and y are correlated by the function )(⋅channelf    
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Fig. 1. Schematic diagram of noise-canceling. 
 

The error signal r(t), served as the recovered signal in 
the adaptive process, is given as follows. 

)(ˆ)()()( tytytxtr −+=     (2) 
where )(ˆ ty is the estimated output from the filter. By 
squaring, the expectation is applied on Eq.(2), given 
as follows. 
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where E[.] represents the expectation operator. Based on 
the second assumption, the third item of Eq.(3) can be 
removed. 

]))(ˆ)([(])([])([ 222 tytytxtr −+= EEE    (4) 
In the nature of signal power, ])([ 2txE  remains unaffected 
while the adaptive filter is used to minimize the power of 
the recovered signal. In other words, the power difference 
is minimized between the contaminating noise signal and 
the filter output, given as follows. 

]))(ˆ)([(])([])([ 222
min tytytxtr −+= EEE    (5) 

From Eq.(5), the conclusion is deducted that the power 
minimization of the signal )(tr  is equivalent to 
minimizing the power of noise. In the paper, the 
neuro-fuzzy filter is trained to remove the noise in the 
adaptive noise cancelling process. 
 
3.   SCNFS-Based Adaptive Filter 
In this paper, the SCNFS-based adaptive filter 
receives the input signals from noise source to 
perform the unknown channel identification. The 
structure of SCNFS is given as follows. 
3.1 Fuzzy inference process of SCNFS 
For simplicity, an MISO (multi-input-single-output) 
fuzzy inference system with the crisp input vector  

)(tH  measured at time t , composed of M input 
variables )(thi , Mi ,,2,1 K= , is considered. The 
universe of discourse of each input dimension is 
defined with corresponding linguistic variables 
denoted as ix . In this paper, a flexible cluster-based 
partition method is used to avoid the unnecessary 
rules, where the partial-connected structure is 
exploited. Assume that the vector of the linguistic 
term   iV belong to the i-th input variable is given as 
follows.  
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 [ ]TRiiii vvv ,2,1,V L=     (6) 
where R is the amount of rules   and   kiv , the k-th 
linguistic term of the i-th linguistic input variable. In 
the proposed SCNFS, the well-known fuzzy T-S 
model is exploited. Based on the proposed fuzzy 
inference process, the k-th rule description can be 
given as follows. 
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where ))((, ths iki is defined as the k-th fuzzy set for the 
i-th linguistic variable [ ]k

M
kkk aaaa L10=  the 

parameter vector of the consequent of the k-th rule, 
[ ])()(1 1 thth Ma L=H , and ky  the output of the 

k-th rule. Based on (7), the inferred result )(tY at time 
t is expressed as 
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where  kβ  is the normalized firing strength of the 
k-th rule. 
3.2 Network structure of SCNFS 
A five-layer neuro-fuzzy structure is shown in Fig. 2, 
which is composed of the layers of input (Layer 1), 
membership (Layer 2), rule (Layer 3), normalization 
(Layer 4), and output (Layer 5). Layer 1 accepts the 
input signals. Layer 2 is used to calculate the 
Gaussian membership values. The nodes of layer 3 
represent the fuzzy rules. In layer 4, the 
normalization process is executed. The network 
before layer 4 represents the premises of the rules, 
and that after layer 4 represents the consequents of 
the rules. Layer 5 is the output layer. Based on the 
constitution of the T-S fuzzy model, the link weight 
is given as follows. 

k
akow aH v

=5                   (9) 
for Rk ,,2,1 K= . The output can be represented as the 
polynomial functions of the input signals. The 
premise sets of the SCNFS are collected as follows.  
 [ ]Rmmmm L21=                (10) 
 [ ]Rσσσσ L21=                (11) 
where 
 [ ]TMkkkk mmmm L21=                                  (12) 
 [ ]TMkkkk σσσσ L21=                                       (13) 

where T)(⋅  indicates the transpose of  )(⋅ , ikm   and  
2
ikσ the mean and the variance of the Gaussian 

functions associated with the k-th node for the i-th 
input dimension. The premise parameters set W is 
given as follows. 
 

[ ]σmW =                 (14) 
The consequent parameters are collected to form the 
matrix . 
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Fig. 2. Neuro-fuzzy Structure of SCNFS. 

 
4. Hybrid Learning Algorithm 
To train the proposed SCNFS, the well-known 
random optimization (RO) is used together with the 
least square estimation (LSE) for fast convergence of 
system learning. Without the need for the derivative 
information of an objective function, the RO 
algorithm features derivative-free and intuitive 
exploration in the input space. Moreover, the RO 
method excels not only at its simplicity and 
convenience, but also ensures to converge to the 
global minimum with probability one in a compact 
set [11]. In this paper, a new version of RO-based 
learning is depicted as follows. The problem of 
system identification can be stated as finding the 
optimal solution   and A that minimizes the cost 
function. In this paper, the cost function is 
defined

∑
=
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N
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Eq. (16) is the root mean square error (RMSE) 
between the SCNFS output and the desired output 
from N=1 to N= Q . The flow chart of hybrid 
RO-LSE learning is illustrated in Fig. 3.  
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Fig. 3. RO-LSE training. 
 

With the integration of RO-LSE, each candidate 
point generated by RO is viewed as a potential 
premise parameter solution. Based on Eq. (8), the 
relationship between the input vector )(NH and the 
desired output can be given as follows. 
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where )(Nε  is the identification error. Let 
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Eq. (17) can be represented as follows. 
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Assuming there are Q training data pairs  to be 
identified as follows. 
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In the proposed parameter learning, the LSE can be 
implemented in recursive way, called recursive LSE 
(RLSE), by which the update can be implemented 
with individual training pattern. The algorithm given 
below is called weighted recursive LSE (WRLSE), 

which provides with the short-term trace ability to 
identify time-varying phenomena.  
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where Iα=)0(P is given with a large value α ,   

)0(~A can be initially set to zeros, λ  a scalar between 
0 and 1. The λ  known as the forgetting factor is used 
to give the significance of importance for the 
preceding training data. This method of WRLSE can 
be capable of approximating time-varying system, 
although the fluctuation caused by noise and 
disturbance can be potential defectiveness. The value 
of λ  should be problem dependent and usually close 
to unity. In this paper, a criterion for parameter 
update is given for the purpose of computational 
efficiency. With the observation { })(),( NDNH , 
N=1,2,…,Q , the error term )(Nε  given in Eq. (20) is 
compared to a pre-given threshold T. If TN ≤|)(| ε  , 
the parameter update is omitted and 

)1(~)(~
−= NN AA  . Otherwise, the parameter is 

updated with Eqs. (22) and (23). With the criterion 
the unnecessary computation can be avoided if the 
current system performance is acceptable. 
 
5. Structure Learning Process 
5.1 rule-splitting constitution for SCNFS  
 In the rule constitution of SCNFS, the mathematical 
description of the existing rules can be expressed as 
an M-dimensional cluster, given as follows.  
 

}|)])
)(

({[exp()())(( ...,,2,1
2

Mi
ik

ikikk mNh
NN =

−
−∧==Φ

σ
βH

  

        (24) 
In Eq. (24), each cluster is regarded as a fuzzy rule 
and can be viewed as a multi-dimensional fuzzy 
membership function. In the proposed rule-splitting 
phase, the rule which has been intensively activated 
should be split to give advanced I/O interpretation. 
The normalized values 

k

β of )(Nkβ , QN L,2,1= , 
are calculated. 
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For each rule of SCNFS, the value of 
k

β is calculated 

after each parameter training epoch. If  
k

β  is larger 
than a specific constant { }γ+)(

1
NR  , then the 

splitting index of the k-th rule, k
spI ( 1)0( =k

spI ), will be 
increased.  
  

ψ×= k
sp

k
sp II                              (26) 

where .1>ψ  The criterion of splitting a new rule is 
given as follows. 
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If  th
k
sp U≥∆ , where )1,0(∈thU a pre-given threshold, 

then a new cluster should be generated by splitting 
from the k-th rule. The mean and the variance of the 
original and the new membership function are given 
as follows. 
 

Mikiki mm ,...,2,11)()( | =×= δ                                   (28) 

Mikinewi mm ,...,2,11)()( |)1( =−×= δ                        (29) 

Mikinewi ,...,2,1)()( | == σσ                                        (30) 
where 10 1 <≤ δ   is a pre-given constant.  
5.2 Rule-expansion for SCNFS 
Although the rule-splitting process has been used to 
cover the incoming input variables as sufficient as 
possible, however, some of the generated rules may 
not well “fired” at current sample time, i. e., the 
existing clusters are too far away from current input. 
Thus, the structure redundancy will cause the 
problem that some rule does not give contribution. In 
this paper, the rule-expanding process is provided to 
ensure that each rule is well-contributed. In Eq. (25), 
if  

k

β  is smaller than the pre-defined constant, then 
the index for the rule-expansion, denoted as k

exI  
( 1)0( =k

exI ), will be increased. 
 ψ×= k

ex
k
ex II                              (31) 

The criterion of expanding a new rule is described as 
follows. 

{ } { }
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If th
k
ex L≤∆  , where )0,1(−∈thL  a pre-given threshold, 

then the variances of the k-th rule are given. 

Mikiki ,...,2,12)()( | =×= δσσ                            (33) 
where .12 >δ  With the simple concept for 
determining the importance of the existing rules 
based on judging the rules is whether appropriately  

Table I. Settings for the SCNFS learning. 
 

 
 
“fired” or not, the proposed rule self-construction has 
provided an efficient way for optimizing the NFS 
structure.  
 
6. Experimental Results 
In this section, a speech signal example is given to 
verify the performance of the SCNFS. 8000 sample 
data are contained, 400 sample data for the training 
purpose and the rest for testing. The parameter 
settings for the RO-LSE algorithm are given in Table 
I. The inputs to the SCNFS filter are the noise signal 

)()(1 tnth =  and the lagged noise ).1()(2 −= tnth  The 
noise channel transfer function between the noise n(t) 
and the contaminating signal y(t) is given as follows. 

])1([1
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−
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              (34) 

Based on the priori information of received noisy 
signal data, the neuro-fuzzy filter attempts to identify 
the relationship of n(t) and y(t) of the nonlinear noise 
channel. To train the NFS filter, the signal r(t) is 
generated as the training data for the CI-based 
adaptive filter. The cost function for training is given 
in Eq. (16) for RO-LSE learning. The Gaussian noise 
is assumed with zero mean and with  different 
time-varying variances given as follows. 
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The cost value generated by Eq. (16) and the rule 
amount of SCNFS is shown in Fig. 4, where the 
RMSE is given with 0.0076 and five rules is 
generated in final for the SCNFS. The source signal 
x(t) and the corrupted signal )(tmrs  of the example 
are shown in Figs. 5(a-b), where the received signal 
shown in Fig. 5(c) is more complicate than the noise 
signal with static variance. The result of recovered 
signal is shown in Fig. 5(d).  
 
7. Conclusions 
The CI-based signal filtering approach has been 
proposed to the problem of adaptive noise 
cancellation. The RO-LSE hybrid learning approach 
for the CI-based filter has been applied on the speech 
signal example with excellent performance, as shown 

η  T thU thL γ  ψ  
1δ 2δ

0.05 0.001 0.4 -0.4 1 1.05 0.2 1.2
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in Fig. 5. With the machine learning approach, the 
premises and consequents of the SCNFS are updated 
complementarily. The RO-LSE hybrid learning 
algorithm enables the SCNFS to perform the 
structure learning and the parameter learning 
simultaneously. With the proposed approach, a 
compact and well-parameterized NFS filter can be 
achieved with excellent performance with the RMSE 
of 0.0076. The proposed SCNFS features the salient 
properties, which include online rule construction, 
derivative-free learning, easy in programming, fast 
convergence, robustness in exposure of different 
time-varying variances of noise. Through the 
experimental results, the CI-based approach has 
shown excellent filtering performance for noise 
cancellation. 
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Fig. 4. Machine learning by the SCNFS filter. (a) Learning 
curve in RMSE. (b) Transition of rule amount in structure 
learning process. 
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Fig. 5. Experimental results by the CI-based filter. (a) 
Original speech signal. (b) Noise signal. (c) Corrupted 
speech signal. (d) Recovered speech signal by the 
proposed SCNFS. 
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